These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37819704)

  • 1. Molecular dynamics investigation of benzoic acid in confined spaces.
    Sironi L; Macetti G; Lo Presti L
    Phys Chem Chem Phys; 2023 Oct; 25(41):28006-28019. PubMed ID: 37819704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of nanoconfined glycerol.
    Busselez R; Lefort R; Ji Q; Affouard F; Morineau D
    Phys Chem Chem Phys; 2009 Dec; 11(47):11127-33. PubMed ID: 20024381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracing the origin of heterogeneities in the local structure and very sluggish dynamics of [Cho][Gly] ionic liquid confined between rutile and graphite slit nanopores: A MD study.
    Khorrami F; Kowsari MH
    J Chem Phys; 2022 Jun; 156(21):214701. PubMed ID: 35676158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.
    Rosenholm JB
    Adv Colloid Interface Sci; 2018 Mar; 253():66-116. PubMed ID: 29422417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular probe dynamics reveals suppression of ice-like regions in strongly confined supercooled water.
    Banerjee D; Bhat SN; Bhat SV; Leporini D
    PLoS One; 2012; 7(9):e44382. PubMed ID: 23049747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and Dynamics of Ionic Liquid [MMIM][Br] Confined in Hydrophobic and Hydrophilic Porous Matrices: A Molecular Dynamics Simulation Study.
    Sharma A; Ghorai PK
    J Phys Chem B; 2016 Nov; 120(45):11790-11799. PubMed ID: 27782393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confined Water: Structure, Dynamics, and Thermodynamics.
    Chakraborty S; Kumar H; Dasgupta C; Maiti PK
    Acc Chem Res; 2017 Sep; 50(9):2139-2146. PubMed ID: 28809537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of Ionic Liquid through Intrinsic Vibrational Probes Using the Dispersion-Corrected DFT Functionals.
    Biswas A; Mallik BS
    J Phys Chem B; 2021 Jul; 125(25):6994-7008. PubMed ID: 34142827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of confinement between attractive and repulsive walls on the thermodynamics of an anomalous fluid.
    Leoni F; Franzese G
    Phys Rev E; 2016 Dec; 94(6-1):062604. PubMed ID: 28085471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Properties of Water Confined in Graphene-Based Membrane: A Classical Molecular Dynamics Simulation Study.
    Lee OS
    Membranes (Basel); 2019 Dec; 9(12):. PubMed ID: 31817137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheology of Water Flows Confined between Multilayer Graphene Walls.
    Li F; Korotkin IA; Karabasov SA
    Langmuir; 2020 May; 36(20):5633-5646. PubMed ID: 32370511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Eighth Liquid Matter Conference.
    Dellago C; Kahl G; Likos CN
    J Phys Condens Matter; 2012 Jul; 24(28):280301. PubMed ID: 22740596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordered and layered structure of liquid nitromethane within a graphene bilayer: toward stabilization of energetic materials through nanoscale confinement.
    Liu Y; Yu T; Lai W; Kang Y; Ge Z
    J Mol Model; 2015 Mar; 21(3):40. PubMed ID: 25672840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
    Clark JK; Paddison SJ
    Phys Chem Chem Phys; 2014 Sep; 16(33):17756-69. PubMed ID: 25030323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles theoretical assessment of catalysis by confinement: NO-O
    Maestri M; Iglesia E
    Phys Chem Chem Phys; 2018 Jun; 20(23):15725-15735. PubMed ID: 29855638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of supercooled water in neutral confinements.
    Klameth F; Vogel M
    J Chem Phys; 2013 Apr; 138(13):134503. PubMed ID: 23574240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Average and extreme multi-atom Van der Waals interactions: strong coupling of multi-atom Van der Waals interactions with covalent bonding.
    Finkelstein AV
    Chem Cent J; 2007 Jul; 1():21. PubMed ID: 17880673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characteristics of liquid nitromethane at the nanoscale confinement in carbon nanotubes.
    Liu Y; Lai W; Yu T; Ge Z; Kang Y
    J Mol Model; 2014 Oct; 20(10):2459. PubMed ID: 25231245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions.
    Miceli G; de Gironcoli S; Pasquarello A
    J Chem Phys; 2015 Jan; 142(3):034501. PubMed ID: 25612714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.