These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37820010)

  • 1. Regeneration of neuromuscular synapses after acute and chronic denervation by inhibiting the gerozyme 15-prostaglandin dehydrogenase.
    Bakooshli MA; Wang YX; Monti E; Su S; Kraft P; Nalbandian M; Alexandrova L; Wheeler JR; Vogel H; Blau HM
    Sci Transl Med; 2023 Oct; 15(717):eadg1485. PubMed ID: 37820010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TISSUE REGENERATION. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration.
    Zhang Y; Desai A; Yang SY; Bae KB; Antczak MI; Fink SP; Tiwari S; Willis JE; Williams NS; Dawson DM; Wald D; Chen WD; Wang Z; Kasturi L; Larusch GA; He L; Cominelli F; Di Martino L; Djuric Z; Milne GL; Chance M; Sanabria J; Dealwis C; Mikkola D; Naidoo J; Wei S; Tai HH; Gerson SL; Ready JM; Posner B; Willson JK; Markowitz SD
    Science; 2015 Jun; 348(6240):aaa2340. PubMed ID: 26068857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength.
    Palla AR; Ravichandran M; Wang YX; Alexandrova L; Yang AV; Kraft P; Holbrook CA; Schürch CM; Ho ATV; Blau HM
    Science; 2021 Jan; 371(6528):. PubMed ID: 33303683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 15-PGDH regulates hematopoietic and gastrointestinal fitness during aging.
    Ho WJ; Smith JNP; Park YS; Hadiono M; Christo K; Jogasuria A; Zhang Y; Broncano AV; Kasturi L; Dawson DM; Gerson SL; Markowitz SD; Desai AB
    PLoS One; 2022; 17(5):e0268787. PubMed ID: 35587945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury.
    Zainul Z; Heikkinen A; Koivisto H; Rautalahti I; Kallio M; Lin S; Härönen H; Norman O; Rüegg MA; Tanila H; Pihlajaniemi T
    J Neurosci; 2018 Apr; 38(17):4243-4258. PubMed ID: 29626165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal partial denervation results in nodal but not terminal sprouting and a decrease in efficacy of remaining neuromuscular junctions in rat soleus muscle.
    Lubischer JL; Thompson WJ
    J Neurosci; 1999 Oct; 19(20):8931-44. PubMed ID: 10516312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional regeneration of the murine neuromuscular synapse relies on long-lasting morphological adaptations.
    Bermedo-García F; Zelada D; Martínez E; Tabares L; Henríquez JP
    BMC Biol; 2022 Jul; 20(1):158. PubMed ID: 35804361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in studies of 15-PGDH as a key enzyme for the degradation of prostaglandins.
    Sun CC; Zhou ZQ; Yang D; Chen ZL; Zhou YY; Wen W; Feng C; Zheng L; Peng XY; Tang CF
    Int Immunopharmacol; 2021 Dec; 101(Pt B):108176. PubMed ID: 34655851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock protein is a key therapeutic target for nerve repair in autoimmune peripheral neuropathy and severe peripheral nerve injury.
    Asthana P; Zhang G; Sheikh KA; Him Eddie Ma C
    Brain Behav Immun; 2021 Jan; 91():48-64. PubMed ID: 32858161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of motor recovery after prolonged denervation of the neuromuscular junction is not due to regenerative failure.
    Sakuma M; Gorski G; Sheu SH; Lee S; Barrett LB; Singh B; Omura T; Latremoliere A; Woolf CJ
    Eur J Neurosci; 2016 Feb; 43(3):451-62. PubMed ID: 26332731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prostaglandin E
    Kim HB; Kim M; Park YS; Park I; Kim T; Yang SY; Cho CJ; Hwang D; Jung JH; Markowitz SD; Hwang SW; Yang SK; Lim DS; Myung SJ
    Gastroenterology; 2017 Feb; 152(3):616-630. PubMed ID: 27864128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A second-generation 15-PGDH inhibitor promotes bone marrow transplant recovery independently of age, transplant dose and granulocyte colony-stimulating factor support.
    Desai A; Zhang Y; Park Y; Dawson DM; Larusch GA; Kasturi L; Wald D; Ready JM; Gerson SL; Markowitz SD
    Haematologica; 2018 Jun; 103(6):1054-1064. PubMed ID: 29472361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury.
    Kang H; Tian L; Mikesh M; Lichtman JW; Thompson WJ
    J Neurosci; 2014 Apr; 34(18):6323-33. PubMed ID: 24790203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical, morphological, and functional changes during peripheral nerve regeneration.
    Ribaric S; Stefanovska A; Brzin M; Kogovsek M; Kroselj P
    Mol Chem Neuropathol; 1991 Oct; 15(2):143-57. PubMed ID: 1776990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotrophin-3 promotes peripheral nerve regeneration by maintaining a repair state of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway.
    Xu X; Song L; Li Y; Guo J; Huang S; Du S; Li W; Cao R; Cui S
    J Transl Med; 2023 Oct; 21(1):733. PubMed ID: 37848983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orally Bioavailable Quinoxaline Inhibitors of 15-Prostaglandin Dehydrogenase (15-PGDH) Promote Tissue Repair and Regeneration.
    Hu B; Toda K; Wang X; Antczak MI; Smith J; Geboers S; Nishikawa G; Li H; Dawson D; Fink S; Desai AB; Williams NS; Markowitz SD; Ready JM
    J Med Chem; 2022 Nov; 65(22):15327-15343. PubMed ID: 36322935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) prevents lipopolysaccharide (LPS)-induced acute liver injury.
    Yao L; Chen W; Song K; Han C; Gandhi CR; Lim K; Wu T
    PLoS One; 2017; 12(4):e0176106. PubMed ID: 28423012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis.
    Myung SJ; Rerko RM; Yan M; Platzer P; Guda K; Dotson A; Lawrence E; Dannenberg AJ; Lovgren AK; Luo G; Pretlow TP; Newman RA; Willis J; Dawson D; Markowitz SD
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12098-102. PubMed ID: 16880406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor deficit in a tauopathy model is induced by disturbances of axonal transport leading to dying-back degeneration and denervation of neuromuscular junctions.
    Audouard E; Van Hees L; Suain V; Yilmaz Z; Poncelet L; Leroy K; Brion JP
    Am J Pathol; 2015 Oct; 185(10):2685-97. PubMed ID: 26272360
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.