BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37820058)

  • 1. Phosphorization Engineering on a MOF-Derived Metal Phosphide Heterostructure (Cu/Cu
    Hussain N; Abbas Z; Ansari SN; Kedarnath G; Mobin SM
    Inorg Chem; 2023 Oct; 62(42):17083-17092. PubMed ID: 37820058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CNT-Assembled Octahedron Carbon-Encapsulated Cu
    Lin J; Zeng C; Lin X; Xu C; Su CY
    Adv Sci (Weinh); 2020 Jul; 7(14):2000736. PubMed ID: 32714768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interior and Exterior Decoration of Transition Metal Oxide Through Cu
    Liu W; Zhang Z; Zhang Y; Zheng Y; Liu N; Su J; Gao Y
    Nanomicro Lett; 2021 Jan; 13(1):61. PubMed ID: 34138273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Fabrication of Hierarchical NiCoP-MOF Heterostructure with Enhanced Pseudocapacitive Properties.
    He S; Guo F; Yang Q; Mi H; Li J; Yang N; Qiu J
    Small; 2021 May; 17(21):e2100353. PubMed ID: 33861511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu-Metal Organic Framework Derived Multilevel Hierarchy (Cu/Cu
    Abbas Z; Hussain N; Ahmed I; Mobin SM
    Inorg Chem; 2023 Jun; 62(23):8835-8845. PubMed ID: 37227374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-Temperature Fabrication of a Nickel-Functionalized Copper Metal⁻Organic Framework (Ni@Cu-MOF) as a New Pseudocapacitive Material for Asymmetric Supercapacitors.
    Wang Y; Nie S; Liu Y; Yan W; Lin S; Cheng G; Yang H; Luo J
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31067738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NiAlP@Cobalt substituted nickel carbonate hydroxide heterostructure engineered for enhanced supercapacitor performance.
    Wan L; Wang Y; Du C; Chen J; Xie M; Wu Y; Zhang Y
    J Colloid Interface Sci; 2022 Mar; 609():1-11. PubMed ID: 34890947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation vacancy modulated Cu
    Xu X; Chen S; Chen P; Guo K; Yu X; Tang J; Lu W; Miao X
    J Colloid Interface Sci; 2024 Jun; 674():624-633. PubMed ID: 38945029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu@Fe-Redox Capacitive-Based Metal-Organic Framework Film for a High-Performance Supercapacitor Electrode.
    Patil SA; Katkar PK; Kaseem M; Nazir G; Lee SW; Patil H; Kim H; Magotra VK; Thi HB; Im H; Shrestha NK
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimetal-organic framework derived Cu(NiCo)
    Zhao W; Yan G; Zheng Y; Liu B; Jia D; Liu T; Cui L; Zheng R; Wei D; Liu J
    J Colloid Interface Sci; 2020 Apr; 565():295-304. PubMed ID: 31978792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General fabrication of metal-organic frameworks on electrospun modified carbon nanofibers for high-performance asymmetric supercapacitors.
    Tian D; Ao Y; Li W; Xu J; Wang C
    J Colloid Interface Sci; 2021 Dec; 603():199-209. PubMed ID: 34186398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 2D metal-organic framework/reduced graphene oxide heterostructure for supercapacitor application.
    Beka LG; Bu X; Li X; Wang X; Han C; Liu W
    RSC Adv; 2019 Nov; 9(62):36123-36135. PubMed ID: 35540587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass-Derived P/N-Co-Doped Carbon Nanosheets Encapsulate Cu
    Yin Y; Zhang Y; Liu N; Sun B; Zhang N
    Front Chem; 2020; 8():316. PubMed ID: 32432076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen-doped NiCoP derived from Ni-MOFs for high performance asymmetric supercapacitor.
    Liu Y; Fan X; Zhang Z; Li C; Zhang S; Li Z; Liu L
    Nanotechnology; 2023 Sep; 34(47):. PubMed ID: 37579745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Step Synthesis of a Binder-Free, Stable, and High-Performance Electrode; Cu-O|Cu
    Yarmolenko A; Malik B; Avraham ES; Nessim GD
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-containing metal-organic framework for high-performance asymmetric supercapacitors with functionalized reduced graphene oxide.
    Khan S; Halder S; Chand S; Pradhan AK; Chakraborty C
    Dalton Trans; 2023 Oct; 52(40):14663-14675. PubMed ID: 37791569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-Controlled Growth of Different Morphological Bimetallic Metal-Organic Frameworks for Enhanced Charge-Storage Performance and Quasi-Solid-State Hybrid Supercapacitors.
    Sahoo G; Jeong HS; Jeong SM
    ACS Appl Mater Interfaces; 2023 May; 15(17):21097-21111. PubMed ID: 37075253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Electrolytic Cations on a 3D Cd-MOF for Supercapacitive Electrodes.
    Deka R; Rajak R; Kumar V; Mobin SM
    Inorg Chem; 2023 Feb; 62(7):3084-3094. PubMed ID: 36758151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an Amorphous Nickel Boride/Manganese Molybdate Heterostructure as an Efficient Electrode Material for a High-Performance Asymmetric Supercapacitor.
    Karthik R; Sukanya R; Chen SM; Hasan M; Dhakal G; Shafi PM; Shim JJ
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11927-11939. PubMed ID: 36890694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MOF-derived NiCo-LDH Nanocages on CuO Nanorod Arrays for Robust and High Energy Density Asymmetric Supercapacitors.
    Bi Q; Hu X; Tao K
    Chemistry; 2023 Feb; 29(11):e202203264. PubMed ID: 36450659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.