These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3782029)

  • 1. Multigeneric aggregations among oral bacteria: a network of independent cell-to-cell interactions.
    Kolenbrander PE; Andersen RN
    J Bacteriol; 1986 Nov; 168(2):851-9. PubMed ID: 3782029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coaggregation of black-pigmented Bacteroides species with other oral bacteria.
    Eke PI; Rotimi VO; Laughon BE
    J Med Microbiol; 1989 Jan; 28(1):1-4. PubMed ID: 2913312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coaggregation of oral Bacteroides species with other bacteria: central role in coaggregation bridges and competitions.
    Kolenbrander PE; Andersen RN; Holdeman LV
    Infect Immun; 1985 Jun; 48(3):741-6. PubMed ID: 3888842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria.
    Kolenbrander PE; Andersen RN; Moore LV
    Infect Immun; 1989 Oct; 57(10):3194-203. PubMed ID: 2777378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell to cell interactions of Capnocytophaga and Bacteroides species with other oral bacteria and their potential role in development of plaque.
    Kolenbrander PE; Andersen RN
    J Periodontal Res; 1984 Nov; 19(6):564-9. PubMed ID: 6241228
    [No Abstract]   [Full Text] [Related]  

  • 6. Isolation and characterization of coaggregation-defective mutants of Actinomyces viscosus, Actinomyces naeslundii, and Streptococcus sanguis.
    Kolenbrander PE
    Infect Immun; 1982 Sep; 37(3):1200-8. PubMed ID: 7129635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactose-reversible coaggregation between oral actinomycetes and Streptococcus sanguis.
    Kolenbrander PE; Williams BL
    Infect Immun; 1981 Jul; 33(1):95-102. PubMed ID: 7263074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii.
    Cisar JO; Kolenbrander PE; McIntire FC
    Infect Immun; 1979 Jun; 24(3):742-52. PubMed ID: 468376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of lectinlike surface components on Capnocytophaga ochracea ATCC 33596 that mediate coaggregation with gram-positive oral bacteria.
    Weiss EI; London J; Kolenbrander PE; Kagermeier AS; Andersen RN
    Infect Immun; 1987 May; 55(5):1198-202. PubMed ID: 3570460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intergeneric rosettes: sequestered surface recognition among human periodontal bacteria.
    Kolenbrander PE; Andersen RN
    Appl Environ Microbiol; 1988 Apr; 54(4):1046-50. PubMed ID: 3377498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Actinomyces and Streptococcus coaggregation groups among human oral isolates from the same site.
    Kolenbrander PE; Inouye Y; Holdeman LV
    Infect Immun; 1983 Aug; 41(2):501-6. PubMed ID: 6409807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of lactose-reversible coadhesion of Actinomyces naeslundii WVU 398A and Streptococcus oralis 34 on the surface of hexadecane droplets.
    Ellen RP; Veisman H; Buivids IA; Rosenberg M
    Oral Microbiol Immunol; 1994 Dec; 9(6):364-71. PubMed ID: 7870472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coaggregations among oral bacteria.
    Kolenbrander PE
    Methods Enzymol; 1995; 253():385-97. PubMed ID: 7476402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevalence of viridans streptococci exhibiting lactose-inhibitable coaggregation with oral actinomycetes.
    Kolenbrander PE; Williams BL
    Infect Immun; 1983 Aug; 41(2):449-52. PubMed ID: 6409806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with Actinomyces naeslundii.
    Egland PG; Dû LD; Kolenbrander PE
    Infect Immun; 2001 Dec; 69(12):7512-6. PubMed ID: 11705927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of lactose-reversible adherence between Actinomyces viscosus and oral streptococci by salivary components.
    Komiyama K; Gibbons RJ
    Caries Res; 1984; 18(3):193-200. PubMed ID: 6584210
    [No Abstract]   [Full Text] [Related]  

  • 17. Lactose-sensitive and -insensitive cell surface interactions of oral Streptococcus milleri strains and actinomyces.
    Eifuku H; Kitada K; Yakushiji T; Inoue M
    Infect Immun; 1991 Jan; 59(1):460-3. PubMed ID: 1987061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of coaggregation-defective mutants of Veillonella atypica.
    Hughes CV; Roseberry CA; Kolenbrander PE
    Arch Oral Biol; 1990; 35 Suppl():123S-125S. PubMed ID: 2088215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fimbria-associated proteins of Bacteroides loescheii PK1295 mediate intergeneric coaggregations.
    Weiss EI; Kolenbrander PE; London J; Hand AR; Andersen RN
    J Bacteriol; 1987 Sep; 169(9):4215-22. PubMed ID: 2887546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coaggregation of Eikenella corrodens with oral bacteria mediated by bacterial lectin-like substance.
    Ebisu S; Nakae H; Okada H
    Adv Dent Res; 1988 Nov; 2(2):323-7. PubMed ID: 3078103
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.