These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 3782032)

  • 1. Heat shock protein synthesis during development in Caulobacter crescentus.
    Gomes SL; Juliani MH; Maia JC; Silva AM
    J Bacteriol; 1986 Nov; 168(2):923-30. PubMed ID: 3782032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric segregation of heat-shock proteins upon cell division in Caulobacter crescentus.
    Reuter SH; Shapiro L
    J Mol Biol; 1987 Apr; 194(4):653-62. PubMed ID: 3309328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of heat shock response in Vibrio cholerae.
    JeevanJyot ; Ghosh A
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2101-9. PubMed ID: 7496521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the heat shock response and identification of heat shock protein antigens of Borrelia burgdorferi.
    Carreiro MM; Laux DC; Nelson DR
    Infect Immun; 1990 Jul; 58(7):2186-91. PubMed ID: 2194963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus.
    Reisenauer A; Mohr CD; Shapiro L
    J Bacteriol; 1996 Apr; 178(7):1919-27. PubMed ID: 8606166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus.
    Fischer B; Rummel G; Aldridge P; Jenal U
    Mol Microbiol; 2002 Apr; 44(2):461-78. PubMed ID: 11972783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis.
    Michel GP; Starka J
    J Bacteriol; 1986 Mar; 165(3):1040-2. PubMed ID: 3949711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinate synthesis and turnover of heat shock proteins in Borrelia burgdorferi: degradation of DnaK during recovery from heat shock.
    Cluss RG; Goel AS; Rehm HL; Schoenecker JG; Boothby JT
    Infect Immun; 1996 May; 64(5):1736-43. PubMed ID: 8613385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus.
    Wu J; Newton A
    J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of DnaK protein during the division cycle of Escherichia coli.
    Hupp TR; Keasling JD; Cooper S; Kaguni JM
    Res Microbiol; 1994 Feb; 145(2):99-109. PubMed ID: 8090998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A survey of the heat shock response in four Streptomyces species reveals two groEL-like genes and three groEL-like proteins in Streptomyces albus.
    Guglielmi G; Mazodier P; Thompson CJ; Davies J
    J Bacteriol; 1991 Nov; 173(22):7374-81. PubMed ID: 1682303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the Caulobacter heat shock gene dnaK is developmentally controlled during growth at normal temperatures.
    Gomes SL; Gober JW; Shapiro L
    J Bacteriol; 1990 Jun; 172(6):3051-9. PubMed ID: 2345134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of dnaK/dnaJ and groEL confers freeze tolerance to Escherichia coli.
    Chow KC; Tung WL
    Biochem Biophys Res Commun; 1998 Dec; 253(2):502-5. PubMed ID: 9878565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE.
    Roberts RC; Toochinda C; Avedissian M; Baldini RL; Gomes SL; Shapiro L
    J Bacteriol; 1996 Apr; 178(7):1829-41. PubMed ID: 8606155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature shift-up leads to simultaneous and continuous plasmid DNA relaxation and induction of DnaK and GroEL proteins in anaerobically growing Escherichia coli cells.
    Mizushima T; Ohtsuka Y; Miki T; Sekimizu K
    FEMS Microbiol Lett; 1994 Sep; 121(3):333-6. PubMed ID: 7926689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus.
    Susin MF; Baldini RL; Gueiros-Filho F; Gomes SL
    J Bacteriol; 2006 Dec; 188(23):8044-53. PubMed ID: 16980445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of heat-shock and bile salts on protein synthesis of Bifidobacterium longum revealed by [35S]methionine labelling and two-dimensional gel electrophoresis.
    Savijoki K; Suokko A; Palva A; Valmu L; Kalkkinen N; Varmanen P
    FEMS Microbiol Lett; 2005 Jul; 248(2):207-15. PubMed ID: 15990254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dnaK protein modulates the heat-shock response of Escherichia coli.
    Tilly K; McKittrick N; Zylicz M; Georgopoulos C
    Cell; 1983 Sep; 34(2):641-6. PubMed ID: 6311435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli.
    Nagai H; Yuzawa H; Kanemori M; Yura T
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock response of Pseudomonas aeruginosa.
    Allan B; Linseman M; MacDonald LA; Lam JS; Kropinski AM
    J Bacteriol; 1988 Aug; 170(8):3668-74. PubMed ID: 3136146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.