These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3782035)

  • 1. Photophosphorylation and oxidative phosphorylation in intact cells and chromatophores of an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114.
    Okamura K; Mitsumori F; Ito O; Takamiya K; Nishimura M
    J Bacteriol; 1986 Dec; 168(3):1142-6. PubMed ID: 3782035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of bacteriochlorophyll and carotenoid synthesis in formation of intracytoplasmic membrane systems and pigment-protein complexes in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114.
    Iba K; Takamiya K; Toh Y; Nishimura M
    J Bacteriol; 1988 Apr; 170(4):1843-7. PubMed ID: 3280552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The extent of the stimulated electrical potential decay under phosphorylating conditions and the H+/ATP ratio in Rhodopseudomonas sphaeroides chromatophores following short flash excitation.
    Jackson JB; Saphon S; Witt HT
    Biochim Biophys Acta; 1975 Oct; 408(1):83-92. PubMed ID: 240445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and possible character of a high-energy intermediate in bacterial photophosphorylation.
    Horio T; Nishikawa K; Yamashita J
    Biochem J; 1966 Jan; 98(1):321-9. PubMed ID: 5938657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photooxidase system of Rhodospirillum rubrum. I. Photooxidations catalyzed by chromatophores isolated from a mutant deficient in photooxidase activity.
    Del Valle-Tascon S; Gimenez-Gallego G; Ramirez JM
    Biochim Biophys Acta; 1977 Jan; 459(1):76-87. PubMed ID: 64259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical physiology of a respiration-deficient mutant of the photosynthetic bacterium Rhodopseudomonas capsulata.
    Marrs B; Stahl CL; Lien S; Gest H
    Proc Natl Acad Sci U S A; 1972 Apr; 69(4):916-20. PubMed ID: 4337246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic control and estimation of the optimal ATP: electron stoichiometry during flash activation of chromatophores from Rhodopseudomonas capsulata.
    Jackson JB; Venturoli G; Baccarini-Melandri A; Melandri BA
    Biochim Biophys Acta; 1981 Jun; 636(1):1-8. PubMed ID: 7284340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functional unit of electrical events and phosphorylation in chromatophores from Rhodopseudomonas sphaeroides.
    Saphon S; Jackson JB; Lerbs V; Witt HT
    Biochim Biophys Acta; 1975 Oct; 408(1):58-66. PubMed ID: 1080674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic Production of Bacteriochlorophylls in the Filamentous Anoxygenic Photosynthetic Bacterium, Chloroflexus aurantiacus in the Light.
    Izaki K; Haruta S
    Microbes Environ; 2020; 35(2):. PubMed ID: 32418929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP pools and transientss in the blue-green alga, Anabaena cylindrica.
    Bottomley PJ; Stewart WD
    Arch Microbiol; 1976 Jul; 108(3):249-58. PubMed ID: 821448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic photosynthetic bacteria.
    Shiba T; Harashima K
    Microbiol Sci; 1986 Dec; 3(12):376-8. PubMed ID: 3153572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On reconstitution of bacterial photophosphorylation in vitro.
    Garcia AF; Drews G; Kamen MD
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):4213-6. PubMed ID: 4530296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative phosphorylation and energy buffering in cyanobacteria.
    Nitschmann WH; Peschek GA
    J Bacteriol; 1986 Dec; 168(3):1205-11. PubMed ID: 3023299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The induction kinetics of bacterial photophosphorylation. Threshold effects by the phosphate potential and correlation with the amplitude of the carotenoid absorption band shift.
    Melandri BA; Venturoli G; de Santis A; Baccarini-Melandri A
    Biochim Biophys Acta; 1980 Aug; 592(1):38-52. PubMed ID: 7397138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen-regulated mRNAs for light-harvesting and reaction center complexes and for bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus during the shift from anaerobic to aerobic growth.
    Zhu YS; Cook DN; Leach F; Armstrong GA; Alberti M; Hearst JE
    J Bacteriol; 1986 Dec; 168(3):1180-8. PubMed ID: 2430948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A photoheterotrophic bacterium from Iceland has adapted its photosynthetic machinery to the long days of polar summer.
    Tomasch J; Kopejtka K; Bílý T; Gardiner AT; Gardian Z; Shivaramu S; Koblížek M; Kaftan D
    mSystems; 2024 Mar; 9(3):e0131123. PubMed ID: 38376261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic factors limiting the synthesis of ATP by chromatophores exposed to short flash excitation.
    Petty KM; Jackson JB
    Biochim Biophys Acta; 1979 Sep; 547(3):474-83. PubMed ID: 226128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade.
    Koblízek M; Mlcousková J; Kolber Z; Kopecký J
    Arch Microbiol; 2010 Jan; 192(1):41-9. PubMed ID: 19949940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen dependence of photosynthetic electron transport in a bacteriochlorophyll-containing rhizobium.
    Kramer DM; Kanazawa A; Fleischman D
    FEBS Lett; 1997 Nov; 417(3):275-8. PubMed ID: 9409732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of composition and activity of the photosynthetic apparatus of Rhodopseudomonas capsulata grown in ammonium-limited continuous culture.
    Dierstein R; Drews G
    Arch Microbiol; 1975 Dec; 106(3):227-35. PubMed ID: 1217939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.