These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 37820374)
1. Multiphasic Coacervates Assembled by Hydrogen Bonding and Hydrophobic Interactions. Liu X; Mokarizadeh AH; Narayanan A; Mane P; Pandit A; Tseng YM; Tsige M; Joy A J Am Chem Soc; 2023 Oct; 145(42):23109-23120. PubMed ID: 37820374 [TBL] [Abstract][Full Text] [Related]
2. Adhesive Coacervates Driven by Hydrogen-Bonding Interaction. Peng Q; Chen J; Zeng Z; Wang T; Xiang L; Peng X; Liu J; Zeng H Small; 2020 Oct; 16(43):e2004132. PubMed ID: 33006447 [TBL] [Abstract][Full Text] [Related]
4. Coacervates: Recent developments as nanostructure delivery platforms for therapeutic biomolecules. Ban E; Kim A Int J Pharm; 2022 Aug; 624():122058. PubMed ID: 35905931 [TBL] [Abstract][Full Text] [Related]
5. Covalently crosslinked coacervates: immobilization and stabilization of proteins with enhanced enzymatic activity. Zhao M; Cho SH; Wu X; Mao J; Vogt BD; Zacharia NS Soft Matter; 2024 Oct; 20(38):7623-7633. PubMed ID: 39291470 [TBL] [Abstract][Full Text] [Related]
6. pH-Controlled Coacervate-Membrane Interactions within Liposomes. Last MGF; Deshpande S; Dekker C ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914 [TBL] [Abstract][Full Text] [Related]
7. Encapsulation Using Plant Proteins: Thermodynamics and Kinetics of Wetting for Simple Zein Coacervates. Li X; Erni P; van der Gucht J; de Vries R ACS Appl Mater Interfaces; 2020 Apr; 12(13):15802-15809. PubMed ID: 32119509 [TBL] [Abstract][Full Text] [Related]
8. Coacervates and coaggregates: Liquid-liquid and liquid-solid phase transitions by native and unfolded protein complexes. Iwashita K; Handa A; Shiraki K Int J Biol Macromol; 2018 Dec; 120(Pt A):10-18. PubMed ID: 30114421 [TBL] [Abstract][Full Text] [Related]
9. Fluoroalcohol - Induced coacervates for selective enrichment and extraction of hydrophobic proteins. Koolivand A; Clayton S; Rion H; Oloumi A; O'Brien A; Khaledi MG J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1083():180-188. PubMed ID: 29549741 [TBL] [Abstract][Full Text] [Related]
10. Fatty Acid-Based Coacervates as a Membrane-free Protocell Model. Zhou L; Koh JJ; Wu J; Fan X; Chen H; Hou X; Jiang L; Lu X; Li Z; He C Bioconjug Chem; 2022 Mar; 33(3):444-451. PubMed ID: 35138820 [TBL] [Abstract][Full Text] [Related]
11. Peptide-based coacervates in therapeutic applications. Ma L; Fang X; Wang C Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257 [TBL] [Abstract][Full Text] [Related]
12. Field pea protein isolate/chitosan complex coacervates: Formation and characterization. Zhang Q; Dong H; Gao J; Chen L; Vasanthan T Carbohydr Polym; 2020 Dec; 250():116925. PubMed ID: 33049839 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen Bonding-Driven Self-Coacervation of Nonionic Homopolymers for Stimuli-Triggered Therapeutic Release. Chowdhury P; Saha B; Bauri K; Sumerlin BS; De P J Am Chem Soc; 2024 Aug; 146(31):21664-21676. PubMed ID: 39058398 [TBL] [Abstract][Full Text] [Related]
14. Water-induced coacervation of alkyl carboxylic acid reverse micelles: phenomenon description and potential for the extraction of organic compounds. Ruiz FJ; Rubio S; Pérez-Bendito D Anal Chem; 2007 Oct; 79(19):7473-84. PubMed ID: 17764154 [TBL] [Abstract][Full Text] [Related]
15. Complex coacervation of Mg(ii) phospho-polymethacrylate, a synthetic analog of sandcastle worm adhesive phosphoproteins. Song IT; Stewart RJ Soft Matter; 2018 Jan; 14(3):379-386. PubMed ID: 29147716 [TBL] [Abstract][Full Text] [Related]
16. The molecular picture of the local environment in a stable model coacervate. Baksi A; Zerze H; Agrawal A; Karim A; Zerze GH Commun Chem; 2024 Sep; 7(1):222. PubMed ID: 39349768 [TBL] [Abstract][Full Text] [Related]
17. Charge Density and Hydrophobicity-Dominated Regimes in the Phase Behavior of Complex Coacervates. Huang J; Laaser JE ACS Macro Lett; 2021 Aug; 10(8):1029-1034. PubMed ID: 35549116 [TBL] [Abstract][Full Text] [Related]
18. Effect of time on the interfacial and foaming properties of beta-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2. Schmitt C; da Silva TP; Bovay C; Rami-Shojaei S; Frossard P; Kolodziejczyk E; Leser ME Langmuir; 2005 Aug; 21(17):7786-95. PubMed ID: 16089384 [TBL] [Abstract][Full Text] [Related]
19. RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly. Aumiller WM; Pir Cakmak F; Davis BW; Keating CD Langmuir; 2016 Oct; 32(39):10042-10053. PubMed ID: 27599198 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous Transition of Spherical Coacervate to Vesicle-Like Compartment. Choi H; Hong Y; Najafi S; Kim SY; Shea JE; Hwang DS; Choi YS Adv Sci (Weinh); 2024 Feb; 11(7):e2305978. PubMed ID: 38063842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]