These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 37820376)

  • 1. Accurately Predicting Protein p
    Wilson CJ; Karttunen M; de Groot BL; Gapsys V
    J Chem Theory Comput; 2023 Nov; 19(21):7833-7845. PubMed ID: 37820376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive Assessment of Various Computational Methods for Aspartate's pK
    Sun Z; Wang X; Song J
    J Chem Inf Model; 2017 Jul; 57(7):1621-1639. PubMed ID: 28644624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic contribution of surface charge residues to the stability of a thermophilic protein: benchmarking experimental and predicted pKa values.
    Chan CH; Wilbanks CC; Makhatadze GI; Wong KB
    PLoS One; 2012; 7(1):e30296. PubMed ID: 22279578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliable and Accurate Prediction of Single-Residue p
    Coskun D; Chen W; Clark AJ; Lu C; Harder ED; Wang L; Friesner RA; Miller EB
    J Chem Theory Comput; 2022 Dec; 18(12):7193-7204. PubMed ID: 36384001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apparent pKa shifts of titratable residues at high denaturant concentration and the impact on protein stability.
    Marti DN
    Biophys Chem; 2005 Dec; 118(2-3):88-92. PubMed ID: 16054747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolving coupled pH titrations using alchemical free energy calculations.
    Wilson CJ; de Groot BL; Gapsys V
    J Comput Chem; 2024 Jun; 45(17):1444-1455. PubMed ID: 38471815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The two pKa's of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin.
    Balashov SP; Govindjee R; Imasheva ES; Misra S; Ebrey TG; Feng Y; Crouch RK; Menick DR
    Biochemistry; 1995 Jul; 34(27):8820-34. PubMed ID: 7612623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overview of the SAMPL6 pK
    Işık M; Rustenburg AS; Rizzi A; Gunner MR; Mobley DL; Chodera JD
    J Comput Aided Mol Des; 2021 Feb; 35(2):131-166. PubMed ID: 33394238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pK
    Işık M; Levorse D; Rustenburg AS; Ndukwe IE; Wang H; Wang X; Reibarkh M; Martin GE; Makarov AA; Mobley DL; Rhodes T; Chodera JD
    J Comput Aided Mol Des; 2018 Oct; 32(10):1117-1138. PubMed ID: 30406372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-dependent pKa values in proteins--a theoretical analysis of protonation energies with practical consequences for enzymatic reactions.
    Bombarda E; Ullmann GM
    J Phys Chem B; 2010 Feb; 114(5):1994-2003. PubMed ID: 20088566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully Atomistic Multiscale Approach for p
    Zanetti-Polzi L; Daidone I; Amadei A
    J Phys Chem B; 2020 Jun; 124(23):4712-4722. PubMed ID: 32427481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pKA values of carboxyl groups in the native and denatured states of barnase: the pKA values of the denatured state are on average 0.4 units lower than those of model compounds.
    Oliveberg M; Arcus VL; Fersht AR
    Biochemistry; 1995 Jul; 34(29):9424-33. PubMed ID: 7626612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pmx: Automated protein structure and topology generation for alchemical perturbations.
    Gapsys V; Michielssens S; Seeliger D; de Groot BL
    J Comput Chem; 2015 Feb; 36(5):348-54. PubMed ID: 25487359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large scale relative protein ligand binding affinities using non-equilibrium alchemy.
    Gapsys V; Pérez-Benito L; Aldeghi M; Seeliger D; van Vlijmen H; Tresadern G; de Groot BL
    Chem Sci; 2019 Dec; 11(4):1140-1152. PubMed ID: 34084371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanometric design of extraordinary hydrophobic-induced pKa shifts for aspartic acid: relevance to protein mechanisms.
    Urry DW; Gowda DC; Peng S; Parker TM; Jing N; Harris RD
    Biopolymers; 1994 Jul; 34(7):889-96. PubMed ID: 8054471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of pK
    Wu X; Lee J; Brooks BR
    J Phys Chem B; 2017 Apr; 121(15):3318-3330. PubMed ID: 27700118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid calculation of protein pKa values using Rosetta.
    Kilambi KP; Gray JJ
    Biophys J; 2012 Aug; 103(3):587-595. PubMed ID: 22947875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR determination of lysine pKa values in the Pol lambda lyase domain: mechanistic implications.
    Gao G; DeRose EF; Kirby TW; London RE
    Biochemistry; 2006 Feb; 45(6):1785-94. PubMed ID: 16460025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic fingerprints of catalytically active amino acids in enzymes.
    Iyengar SM; Barnsley KK; Xu R; Prystupa A; Ondrechen MJ
    Protein Sci; 2022 May; 31(5):e4291. PubMed ID: 35481659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.