These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37820527)

  • 1. Comprehending the practical implementation of permanganate and ferrate for water remediation in complex water matrices.
    Wang D; Yu Y; He J; Ma J; Zhang J; Strathmann TJ
    J Hazard Mater; 2024 Jan; 462():132659. PubMed ID: 37820527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.
    Ramseier MK; Peter A; Traber J; von Gunten U
    Water Res; 2011 Feb; 45(5):2002-10. PubMed ID: 21220144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Alterations of Dissolved Organic Matter by Permanganate Oxidation.
    Laszakovits JR; Somogyi A; MacKay AA
    Environ Sci Technol; 2020 Mar; 54(6):3256-3266. PubMed ID: 32083469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of permanganate oxidation on the photoreactivity of dissolved organic matter for photodegradation of typical pharmaceuticals.
    Wan D; Kong Y; Wang X; Selvinsimpson S; Sharma VK; Zuo Y; Chen Y
    Sci Total Environ; 2022 Mar; 813():152647. PubMed ID: 34968593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of ferrate(VI) and aquatic humic substances in water treatment.
    Cui J; Tang Z; Lin Q; Yang L; Deng Y
    Sci Total Environ; 2024 Apr; 919():170919. PubMed ID: 38354807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.
    Zhang J; Sun B; Xiong X; Gao N; Song W; Du E; Guan X; Zhou G
    Water Res; 2014 Oct; 63():262-70. PubMed ID: 25016299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid oxidation of iodide and hypoiodous acid with ferrate and no formation of iodoform and monoiodoacetic acid in the ferrate/I
    Wang X; Liu Y; Huang Z; Wang L; Wang Y; Li Y; Li J; Qi J; Ma J
    Water Res; 2018 Nov; 144():592-602. PubMed ID: 30092505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characterization of soil dissolved organic matter during dielectric barrier discharge (DBD) plasma treatment: Effects of discharge power, atmosphere and soil moisture content.
    Liu Y; Deng S; Chen L; Zhang A; Suttiruengwong S; Sun Z
    Chemosphere; 2022 Jun; 297():134145. PubMed ID: 35240150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of ferrate and ozone pre-oxidation on disinfection byproduct formation from chlorination and chloramination.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Water Res; 2019 Jun; 156():110-124. PubMed ID: 30909124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of integrated ferrate-polyaluminum chloride coagulation as a treatment technology for removing freshwater humic substances.
    Amano M; Lohwacharin J; Dubechot A; Takizawa S
    J Environ Manage; 2018 Apr; 212():323-331. PubMed ID: 29453117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferrates: greener oxidants with multimodal action in water treatment technologies.
    Sharma VK; Zboril R; Varma RS
    Acc Chem Res; 2015 Feb; 48(2):182-91. PubMed ID: 25668700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitigation and degradation of natural organic matters (NOMs) during ferrate(VI) application for drinking water treatment.
    Song Y; Deng Y; Jung C
    Chemosphere; 2016 Mar; 146():145-53. PubMed ID: 26714297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of pre-oxidation of natural organic matter for the mitigation of disinfection byproducts: Electron donating capacity and UV absorbance as surrogate parameters.
    Rougé V; von Gunten U; Allard S
    Water Res; 2020 Dec; 187():116418. PubMed ID: 33011567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate--a comparative study.
    Gao S; Zhao Z; Xu Y; Tian J; Qi H; Lin W; Cui F
    J Hazard Mater; 2014 Jun; 274():258-69. PubMed ID: 24793298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research progress in the use of ferrate(VI) for the environmental remediation.
    Jiang JQ
    J Hazard Mater; 2007 Jul; 146(3):617-23. PubMed ID: 17531376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular-Level Transformation of Dissolved Organic Matter during Oxidation by Ozone and Hydroxyl Radical.
    Remucal CK; Salhi E; Walpen N; von Gunten U
    Environ Sci Technol; 2020 Aug; 54(16):10351-10360. PubMed ID: 32697081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dissolved organic matter on selective oxidation of toluene by ozone micro-nano bubble water.
    Xie Z; Shentu J; Long Y; Lu L; Shen D; Qi S
    Chemosphere; 2023 Jun; 325():138400. PubMed ID: 36925009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions.
    Sharma VK; Graham NJ; Li XZ; Yuan BL
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):453-61. PubMed ID: 19495821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.
    Ramseier MK; von Gunten U; Freihofer P; Hammes F
    Water Res; 2011 Jan; 45(3):1490-500. PubMed ID: 21146846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidant-reactive carbonous moieties in dissolved organic matter: Selective quantification by oxidative titration using chlorine dioxide and ozone.
    Houska J; Salhi E; Walpen N; von Gunten U
    Water Res; 2021 Dec; 207():117790. PubMed ID: 34740166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.