These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 37820714)
1. Laser-Assisted Structuring of Graphene Films with Biocompatible Liquid Crystal Polymer for Skin/Brain-Interfaced Electrodes. Park R; Lee DH; Koh CS; Kwon YW; Chae SY; Kim CS; Jung HH; Jeong J; Hong SW Adv Healthc Mater; 2024 Jan; 13(3):e2301753. PubMed ID: 37820714 [TBL] [Abstract][Full Text] [Related]
2. Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes. Singh SP; Li Y; Zhang J; Tour JM; Arnusch CJ ACS Nano; 2018 Jan; 12(1):289-297. PubMed ID: 29241007 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of high-resolution, flexible, laser-induced graphene sensors via stencil masking. Clark KM; Nekoba DT; Viernes KL; Zhou J; Ray TR Biosens Bioelectron; 2024 Nov; 264():116649. PubMed ID: 39137522 [TBL] [Abstract][Full Text] [Related]
4. Graphene Nanocomposite Ink Coated Laser Transformed Flexible Electrodes for Selective Dopamine Detection and Immunosensing. Ghosh D; Tabassum R; Sarkar PP; Rahman MA; Jalal AH; Islam N; Ashraf A ACS Appl Bio Mater; 2024 May; 7(5):3143-3153. PubMed ID: 38662615 [TBL] [Abstract][Full Text] [Related]
5. Robust, stretchable bioelectronic interfaces for cardiac pacing enabled by interfacial transfer of laser-induced graphene via water-response, nonswellable PVA gels. Zhao L; Chang Z; Guo B; Lu Y; Lu X; Ren Q; Lv A; Nie J; Ji D; Rotenberg MY; Wang B; Zhang Y; Fang Y Biosens Bioelectron; 2024 Oct; 261():116453. PubMed ID: 38850739 [TBL] [Abstract][Full Text] [Related]
6. Conducting Polymer-Reinforced Laser-Irradiated Graphene as a Heterostructured 3D Transducer for Flexible Skin Patch Biosensors. Meng L; Turner APF; Mak WC ACS Appl Mater Interfaces; 2021 Nov; 13(45):54456-54465. PubMed ID: 34726900 [TBL] [Abstract][Full Text] [Related]
7. Advancements in fabrication process of microelectrode array for a retinal prosthesis using Liquid Crystal Polymer (LCP). Jeong J; Shin S; Lee GJ; Gwon TM; Park JH; Kim SJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5295-8. PubMed ID: 24110931 [TBL] [Abstract][Full Text] [Related]
9. Water Peel-Off Transfer of Electronically Enhanced, Paper-Based Laser-Induced Graphene for Wearable Electronics. Pinheiro T; Correia R; Morais M; Coelho J; Fortunato E; Sales MGF; Marques AC; Martins R ACS Nano; 2022 Dec; 16(12):20633-20646. PubMed ID: 36383513 [TBL] [Abstract][Full Text] [Related]
10. Laser Fabrication of Humidity Sensors on Ethanol-Soaked Polyimide for Fully Contactless Respiratory Monitoring. Chen R; Liu S; Zhang C; Jiang C; Zhou W; Chen P; Wu D; Li D; Zhang J; Luo T ACS Appl Mater Interfaces; 2024 Aug; 16(34):45252-45264. PubMed ID: 39139068 [TBL] [Abstract][Full Text] [Related]
11. Multifunctional laser-induced graphene circuits and laser-printed nanomaterials toward non-invasive human kidney function monitoring. Huang Y; Zhong H; Yang R; Pan Y; Lin J; Lee CKW; Chen S; Tan M; Lu X; Poon WY; Yuan Q; Li MG Biosens Bioelectron; 2024 Sep; 259():116386. PubMed ID: 38749285 [TBL] [Abstract][Full Text] [Related]
13. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. Strong V; Dubin S; El-Kady MF; Lech A; Wang Y; Weiller BH; Kaner RB ACS Nano; 2012 Feb; 6(2):1395-403. PubMed ID: 22242925 [TBL] [Abstract][Full Text] [Related]
14. Donut-Shaped Stretchable Kirigami: Enabling Electronics to Integrate with the Deformable Muscle. Morikawa Y; Yamagiwa S; Sawahata H; Numano R; Koida K; Kawano T Adv Healthc Mater; 2019 Dec; 8(23):e1900939. PubMed ID: 31697038 [TBL] [Abstract][Full Text] [Related]
15. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608 [TBL] [Abstract][Full Text] [Related]
16. Laser-Induced Graphene Electrodes Modified with a Molecularly Imprinted Polymer for Detection of Tetracycline in Milk and Meat. Abera BD; Ortiz-Gómez I; Shkodra B; J Romero F; Cantarella G; Petti L; Salinas-Castillo A; Lugli P; Rivadeneyra A Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009811 [TBL] [Abstract][Full Text] [Related]
17. Flexible and water-stable graphene-based electrodes for long-term use in bioelectronics. Murastov G; Bogatova E; Brazovskiy K; Amin I; Lipovka A; Dogadina E; Cherepnyov A; Ananyeva A; Plotnikov E; Ryabov V; Rodriguez RD; Sheremet E Biosens Bioelectron; 2020 Oct; 166():112426. PubMed ID: 32750676 [TBL] [Abstract][Full Text] [Related]
18. Kirigami-enabled stretchable laser-induced graphene heaters for wearable thermotherapy. Chen J; Shi Y; Ying B; Hu Y; Gao Y; Luo S; Liu X Mater Horiz; 2024 Apr; 11(8):2010-2020. PubMed ID: 38362790 [TBL] [Abstract][Full Text] [Related]
19. Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene. Dallinger A; Keller K; Fitzek H; Greco F ACS Appl Mater Interfaces; 2020 Apr; 12(17):19855-19865. PubMed ID: 32249561 [TBL] [Abstract][Full Text] [Related]
20. Laser Writing of Janus Graphene/Kevlar Textile for Intelligent Protective Clothing. Wang H; Wang H; Wang Y; Su X; Wang C; Zhang M; Jian M; Xia K; Liang X; Lu H; Li S; Zhang Y ACS Nano; 2020 Mar; 14(3):3219-3226. PubMed ID: 32083839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]