BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37820819)

  • 1. Sulfate availability drives the reductive transformation of schwertmannite by co-cultured iron- and sulfate-reducing bacteria.
    Ke C; Deng Y; Zhang S; Ren M; Liu B; He J; Wu R; Dang Z; Guo C
    Sci Total Environ; 2024 Jan; 906():167690. PubMed ID: 37820819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial reduction of schwertmannite by co-cultured iron- and sulfate-reducing bacteria.
    Ke C; Guo C; Zhang S; Deng Y; Li X; Li Y; Lu G; Ling F; Dang Z
    Sci Total Environ; 2023 Feb; 861():160551. PubMed ID: 36460112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine.
    Bao Y; Guo C; Lu G; Yi X; Wang H; Dang Z
    Sci Total Environ; 2018 Mar; 616-617():647-657. PubMed ID: 29103647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfide-induced repartition of chromium associated with schwertmannite in acid mine drainage: Impacts and mechanisms.
    Xie Y; Ye H; Wen Z; Dang Z; Lu G
    Sci Total Environ; 2022 Nov; 848():157863. PubMed ID: 35934033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture.
    Zeng Y; Wang H; Guo C; Wan J; Fan C; Reinfelder JR; Lu G; Wu F; Huang W; Dang Z
    Environ Pollut; 2018 Nov; 242(Pt A):738-748. PubMed ID: 30031307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction.
    Schoepfer VA; Burton ED; Johnston SG; Kraal P
    Sci Total Environ; 2019 Mar; 657():770-780. PubMed ID: 30677942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfidation of Cd-Sch during the microbial sulfate reduction: Nanoscale redistribution of Cd.
    Deng Y; Ke C; Ren M; Xu Z; Zhang S; Dang Z; Guo C
    Sci Total Environ; 2024 Jun; 946():174275. PubMed ID: 38936727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive dissolution of jarosite by a sulfate reducing bacterial community: Secondary mineralization and microflora development.
    Gao K; Jiang M; Guo C; Zeng Y; Fan C; Zhang J; Reinfelder JR; Huang W; Lu G; Dang Z
    Sci Total Environ; 2019 Nov; 690():1100-1109. PubMed ID: 31470473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Migration and Transformation of Adsorbed Arsenic Mediated by Sulfate Reducing Bacteria].
    Jia QQ; Li W; Wang YN; Duan JM; Liu YC
    Huan Jing Ke Xue; 2019 Jan; 40(1):430-436. PubMed ID: 30628302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of adsorbed phosphate on jarosite reduction by a sulfate reducing bacterium and associated mineralogical transformation.
    Gao K; Hu Y; Guo C; Ke C; He C; Hao X; Lu G; Dang Z
    Ecotoxicol Environ Saf; 2020 Oct; 202():110921. PubMed ID: 32800256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid pyritization in the presence of a sulfur/sulfate-reducing bacterial consortium.
    Berg JS; Duverger A; Cordier L; Laberty-Robert C; Guyot F; Miot J
    Sci Rep; 2020 May; 10(1):8264. PubMed ID: 32427954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite.
    Wang Y; Gao M; Huang W; Wang T; Liu Y
    Chemosphere; 2020 Jul; 251():126427. PubMed ID: 32171940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of Cd during mineral transformation by sulfate-reducing bacteria in clay-size fractions from soils with high geochemical background.
    Yan X; Guan DX; Li J; Song Y; Tao H; Zhang X; Ma M; Ji J; Zhao W
    J Hazard Mater; 2023 Oct; 459():132213. PubMed ID: 37549581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive Growth of Sulfate-Reducing Bacteria with Bioleaching Acidophiles for Bioremediation of Heap Bioleaching Residue.
    Phyo AK; Jia Y; Tan Q; Sun H; Liu Y; Dong B; Ruan R
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32326522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial reduction of As(V)-loaded Schwertmannite by Desulfosporosinus meridiei.
    Zhang Y; Gao K; Dang Z; Huang W; Reinfelder JR; Ren Y
    Sci Total Environ; 2021 Apr; 764():144279. PubMed ID: 33401041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement effects of decabromodiphenyl ether on microbial sulfate reduction in eutrophic lake sediments: A study on sulfate-reducing bacteria using dsrA and dsrB amplicon sequencing.
    Gao H; Wang C; Chen J; Wang P; Zhang J; Zhang B; Wang R; Wu C
    Sci Total Environ; 2022 Oct; 843():157073. PubMed ID: 35780888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of phosphate on ferrihydrite transformation and the associated arsenic behavior mediated by sulfate-reducing bacterium.
    Gao K; Zhu H; Zhou W; Hu S; Zhang B; Dang Z; Liu C
    J Hazard Mater; 2023 Apr; 448():130863. PubMed ID: 36708694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfate-accelerated photochemical oxidation of arsenopyrite in acidic systems under oxic conditions: Formation and function of schwertmannite.
    Hong J; Liu L; Zhang Z; Xia X; Yang L; Ning Z; Liu C; Qiu G
    J Hazard Mater; 2022 Jul; 433():128716. PubMed ID: 35358816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.