BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37821041)

  • 1. A fungal-algal self-flocculation system and its application to treat filter sludge leachate in the sugar industry.
    Li H; Wang Z; Feng T; Guo Y; Lv J; Li N; Liu X; Liu J
    Environ Pollut; 2023 Dec; 338():122718. PubMed ID: 37821041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass.
    Wang SK; Yang KX; Zhu YR; Zhu XY; Nie DF; Jiao N; Angelidaki I
    Bioresour Technol; 2022 Oct; 361():127625. PubMed ID: 35850393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: Influence of culture conditions on microalgae growth and nutrient removal.
    Nguyen TDP; Tran TNT; Le TVA; Nguyen Phan TX; Show PL; Chia SR
    J Biosci Bioeng; 2019 Apr; 127(4):492-498. PubMed ID: 30416001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flocculation performance and mechanism of fungal pellets on harvesting of microalgal biomass.
    Pei XY; Ren HY; Liu BF
    Bioresour Technol; 2021 Feb; 321():124463. PubMed ID: 33290984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bacterial strain Citrobacter W4 facilitates the bio-flocculation of wastewater cultured microalgae Chlorella pyrenoidosa.
    He J; Ding W; Han W; Chen Y; Jin W; Zhou X
    Sci Total Environ; 2022 Feb; 806(Pt 3):151336. PubMed ID: 34743821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing biolipid production and self-flocculation of Chlorella vulgaris by extracellular polymeric substances from granular sludge with CO
    Liu X; Ji B; Li A
    Water Res; 2023 Jun; 236():119960. PubMed ID: 37054610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production.
    Muradov N; Taha M; Miranda AF; Wrede D; Kadali K; Gujar A; Stevenson T; Ball AS; Mouradov A
    Biotechnol Biofuels; 2015; 8():24. PubMed ID: 25763102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.
    Alam MA; Wan C; Guo SL; Zhao XQ; Huang ZY; Yang YL; Chang JS; Bai FW
    J Biosci Bioeng; 2014 Jul; 118(1):29-33. PubMed ID: 24507901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient microalgae harvesting using a thermal flotation method with response surface methodology.
    Zou X; Xu K; Wen H; Xue Y; Qu Y; Li Y
    Water Sci Technol; 2019 Aug; 80(3):426-436. PubMed ID: 31596254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent.
    Nguyen TDP; Le TVA; Show PL; Nguyen TT; Tran MH; Tran TNT; Lee SY
    Bioresour Technol; 2019 Jan; 272():34-39. PubMed ID: 30308405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive analysis of an effective flocculation method for high quality microalgal biomass harvesting.
    Labeeuw L; Commault AS; Kuzhiumparambil U; Emmerton B; Nguyen LN; Nghiem LD; Ralph PJ
    Sci Total Environ; 2021 Jan; 752():141708. PubMed ID: 32892040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fungal immobilization technique for efficient harvesting of oleaginous microalgae: Key parameter optimization, mechanism exploration and spent medium recycling.
    Chu R; Li S; Yin Z; Hu D; Zhang L; Xiang M; Zhu L
    Sci Total Environ; 2021 Oct; 790():148174. PubMed ID: 34380256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave assisted flocculation for harvesting of Chlorella vulgaris.
    Liu W; Cui Y; Cheng P; Huo S; Ma X; Chen Q; Cobb K; Chen P; Ma J; Gao X; Ruan R
    Bioresour Technol; 2020 Oct; 314():123770. PubMed ID: 32652448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of fungal-assisted algal harvesting through biopellet formation on pesticides in water.
    Hultberg M; Bodin H
    Biodegradation; 2018 Dec; 29(6):557-565. PubMed ID: 30171388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of recycling culture medium after harvesting of Chlorella vulgaris biomass by flocculating bacteria on microalgal growth and the functionary mechanism.
    Li Y; Zhang Z; Duan Y; Wang H
    Bioresour Technol; 2019 May; 280():188-198. PubMed ID: 30771574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-culture of fungi-microalgae consortium for wastewater treatment: A review.
    Leng L; Li W; Chen J; Leng S; Chen J; Wei L; Peng H; Li J; Zhou W; Huang H
    Bioresour Technol; 2021 Jun; 330():125008. PubMed ID: 33773267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flocculation of Chlorella vulgaris with alum and pH adjustment.
    Mohseni F; Moosavi Zenooz A
    Biotechnol Appl Biochem; 2022 Jun; 69(3):1112-1120. PubMed ID: 34036645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovative hybrid system for wastewater treatment: High-rate algal ponds for effluent treatment and biofilm reactor for biomass production and harvesting.
    Rodrigues de Assis L; Calijuri ML; Assemany PP; Silva TA; Teixeira JS
    J Environ Manage; 2020 Nov; 274():111183. PubMed ID: 32784083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-flocculation behaviour of cellulose-based bioflocculant synthesized from sewage water grown Chlorella sorokiniana and Scenedesmus abundans.
    Shah SV; Lamba BY; Tiwari AK; Sharma R
    Bioprocess Biosyst Eng; 2024 May; 47(5):725-736. PubMed ID: 38582779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.