BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37821431)

  • 1. Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images.
    Wang W; Zhao Y; Teng L; Yan J; Guo Y; Qiu Y; Ji Y; Yu B; Pei D; Duan W; Wang M; Wang L; Duan J; Sun Q; Wang S; Duan H; Sun C; Guo Y; Luo L; Guo Z; Guan F; Wang Z; Xing A; Liu Z; Zhang H; Cui L; Zhang L; Jiang G; Yan D; Liu X; Zheng H; Liang D; Li W; Li ZC; Zhang Z
    Nat Commun; 2023 Oct; 14(1):6359. PubMed ID: 37821431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Diffuse Glioma Subtype from Clinical-Grade Pathological Images Using Deep Transfer Learning.
    Im S; Hyeon J; Rha E; Lee J; Choi HJ; Jung Y; Kim TJ
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34067934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning for Noninvasive Assessment of H3 K27M Mutation Status in Diffuse Midline Gliomas Using MR Imaging.
    Li J; Zhang P; Qu L; Sun T; Duan Y; Wu M; Weng J; Li Z; Gong X; Liu X; Wang Y; Jia W; Su X; Yue Q; Li J; Zhang Z; Barkhof F; Huang RY; Chang K; Sair H; Ye C; Zhang L; Zhuo Z; Liu Y
    J Magn Reson Imaging; 2023 Sep; 58(3):850-861. PubMed ID: 36692205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transformer-based multi-task deep learning model for simultaneous infiltrated brain area identification and segmentation of gliomas.
    Li Y; Zheng K; Li S; Yi Y; Li M; Ren Y; Guo C; Zhong L; Yang W; Li X; Yao L
    Cancer Imaging; 2023 Oct; 23(1):105. PubMed ID: 37891702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers.
    Jin L; Shi F; Chun Q; Chen H; Ma Y; Wu S; Hameed NUF; Mei C; Lu J; Zhang J; Aibaidula A; Shen D; Wu J
    Neuro Oncol; 2021 Jan; 23(1):44-52. PubMed ID: 32663285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of artificial intelligence-based prescreening of large-bowel biopsies taken in the UK and Portugal: a retrospective cohort study.
    Bilal M; Tsang YW; Ali M; Graham S; Hero E; Wahab N; Dodd K; Sahota H; Wu S; Lu W; Jahanifar M; Robinson A; Azam A; Benes K; Nimir M; Hewitt K; Bhalerao A; Eldaly H; Raza SEA; Gopalakrishnan K; Minhas F; Snead D; Rajpoot N
    Lancet Digit Health; 2023 Nov; 5(11):e786-e797. PubMed ID: 37890902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Subtype Classification in Lower-Grade Glioma with Accelerated DTI.
    Aliotta E; Nourzadeh H; Batchala PP; Schiff D; Lopes MB; Druzgal JT; Mukherjee S; Patel SH
    AJNR Am J Neuroradiol; 2019 Sep; 40(9):1458-1463. PubMed ID: 31413006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study for glioma classification using deep convolutional neural networks.
    Özcan H; Emiroğlu BG; Sabuncuoğlu H; Özdoğan S; Soyer A; Saygı T
    Math Biosci Eng; 2021 Jan; 18(2):1550-1572. PubMed ID: 33757198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated glioma grading on conventional MRI images using deep convolutional neural networks.
    Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW
    Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers.
    Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J
    EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the noninvasive classification of glioma genetic subtype with deep learning and diffusion-weighted imaging.
    Cluceru J; Interian Y; Phillips JJ; Molinaro AM; Luks TL; Alcaide-Leon P; Olson MP; Nair D; LaFontaine M; Shai A; Chunduru P; Pedoia V; Villanueva-Meyer JE; Chang SM; Lupo JM
    Neuro Oncol; 2022 Apr; 24(4):639-652. PubMed ID: 34653254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of whole slide imaging-based deep learning in the assessment of intraoperative and postoperative sections in neuropathology.
    Shi L; Shen L; Jian J; Xia W; Yang KD; Tian Y; Huang J; Yuan B; Shen L; Liu Z; Zhang J; Zhang R; Wu K; Jing D; Gao X
    Brain Pathol; 2023 Jul; 33(4):e13160. PubMed ID: 37186490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas.
    Bangalore Yogananda CG; Shah BR; Vejdani-Jahromi M; Nalawade SS; Murugesan GK; Yu FF; Pinho MC; Wagner BC; Mickey B; Patel TR; Fei B; Madhuranthakam AJ; Maldjian JA
    Neuro Oncol; 2020 Mar; 22(3):402-411. PubMed ID: 31637430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles.
    Barker J; Hoogi A; Depeursinge A; Rubin DL
    Med Image Anal; 2016 May; 30():60-71. PubMed ID: 26854941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades.
    Zhang Z; Xiao J; Wu S; Lv F; Gong J; Jiang L; Yu R; Luo T
    J Digit Imaging; 2020 Aug; 33(4):826-837. PubMed ID: 32040669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based prediction of H3K27M alteration in diffuse midline gliomas based on whole-brain MRI.
    Huang B; Zhang Y; Mao Q; Ju Y; Liu Y; Su Z; Lei Y; Ren Y
    Cancer Med; 2023 Aug; 12(16):17139-17148. PubMed ID: 37461358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Intelligence-Assisted Classification of Gliomas Using Whole Slide Images.
    Jose L; Liu S; Russo C; Cong C; Song Y; Rodriguez M; Di Ieva A
    Arch Pathol Lab Med; 2023 Aug; 147(8):916-924. PubMed ID: 36445697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas.
    Zhou H; Chang K; Bai HX; Xiao B; Su C; Bi WL; Zhang PJ; Senders JT; Vallières M; Kavouridis VK; Boaro A; Arnaout O; Yang L; Huang RY
    J Neurooncol; 2019 Apr; 142(2):299-307. PubMed ID: 30661193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach.
    Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y
    Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 102 AI-Based Molecular Classification of Diffuse Gliomas using Rapid, Label-Free Optical Imaging.
    Hollon TC; Golfinos JG; Orringer DA; Berger M; Hervey-Jumper SL; Muraszko KM; Freudiger C; Heth J; Sagher O; Jiang C; Chowdury A; Moin MN; Kondepudi A; Aabedi AA; Adapa AR; Al-Holou W; Wadiura L; Widhalm G; Neuschmelting V; Reinecke D; Camelo-Piragua S
    Neurosurgery; 2023 Apr; 69(Suppl 1):22-23. PubMed ID: 36924489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.