These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37821497)

  • 1. Next-generation CRISPR gene-drive systems using Cas12a nuclease.
    Sanz Juste S; Okamoto EM; Nguyen C; Feng X; López Del Amo V
    Nat Commun; 2023 Oct; 14(1):6388. PubMed ID: 37821497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene drive systems: do they have a place in agricultural weed management?
    Neve P
    Pest Manag Sci; 2018 Dec; 74(12):2671-2679. PubMed ID: 29999229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 gene drive technology to control transmission of vector-borne parasitic infections.
    Nateghi Rostami M
    Parasite Immunol; 2020 Sep; 42(9):e12762. PubMed ID: 32497313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance analysis of novel toxin-antidote CRISPR gene drive systems.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    BMC Biol; 2020 Mar; 18(1):27. PubMed ID: 32164660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression.
    Taxiarchi C; Beaghton A; Don NI; Kyrou K; Gribble M; Shittu D; Collins SP; Beisel CL; Galizi R; Crisanti A
    Nat Commun; 2021 Jun; 12(1):3977. PubMed ID: 34172748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can CRISPR-Based Gene Drive Be Confined in the Wild? A Question for Molecular and Population Biology.
    Marshall JM; Akbari OS
    ACS Chem Biol; 2018 Feb; 13(2):424-430. PubMed ID: 29370514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing resistance allele formation in CRISPR gene drive.
    Champer J; Liu J; Oh SY; Reeves R; Luthra A; Oakes N; Clark AG; Messer PW
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5522-5527. PubMed ID: 29735716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Controllable Gene Drive in
    Chae D; Lee J; Lee N; Park K; Moon SJ; Kim HH
    ACS Synth Biol; 2020 Sep; 9(9):2362-2377. PubMed ID: 32786353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene drives gaining speed.
    Bier E
    Nat Rev Genet; 2022 Jan; 23(1):5-22. PubMed ID: 34363067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of gene drive systems for population suppression of insect pests.
    Asad M; Liu D; Chen J; Yang G
    Bull Entomol Res; 2022 Dec; 112(6):724-733. PubMed ID: 36043456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption.
    Xin C; Yin J; Yuan S; Ou L; Liu M; Zhang W; Hu J
    Nat Commun; 2022 Sep; 13(1):5623. PubMed ID: 36153319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nickase Cas9 gene-drive system promotes super-Mendelian inheritance in Drosophila.
    López Del Amo V; Juste SS; Gantz VM
    Cell Rep; 2022 May; 39(8):110843. PubMed ID: 35613590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment.
    López Del Amo V; Bishop AL; Sánchez C HM; Bennett JB; Feng X; Marshall JM; Bier E; Gantz VM
    Nat Commun; 2020 Jan; 11(1):352. PubMed ID: 31953404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the range of editable targets in the wheat genome using the variants of the Cas12a and Cas9 nucleases.
    Wang W; Tian B; Pan Q; Chen Y; He F; Bai G; Akhunova A; Trick HN; Akhunov E
    Plant Biotechnol J; 2021 Dec; 19(12):2428-2441. PubMed ID: 34270168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect.
    Champer J; Wen Z; Luthra A; Reeves R; Chung J; Liu C; Lee YL; Liu J; Yang E; Messer PW; Clark AG
    Genetics; 2019 May; 212(1):333-341. PubMed ID: 30918006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Conserved Sequences Circumvents the Evolution of Resistance in a Viral Gene Drive against Human Cytomegalovirus.
    Walter M; Perrone R; Verdin E
    J Virol; 2021 Jul; 95(15):e0080221. PubMed ID: 34011551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations Reveal High Efficiency and Confinement of a Population Suppression CRISPR Toxin-Antidote Gene Drive.
    Zhu Y; Champer J
    ACS Synth Biol; 2023 Mar; 12(3):809-819. PubMed ID: 36825354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles.
    Bishop AL; López Del Amo V; Okamoto EM; Bodai Z; Komor AC; Gantz VM
    Nat Commun; 2022 May; 13(1):2595. PubMed ID: 35534475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A homing rescue gene drive with multiplexed gRNAs reaches high frequency in cage populations but generates functional resistance.
    Hou S; Chen J; Feng R; Xu X; Liang N; Champer J
    J Genet Genomics; 2024 Aug; 51(8):836-843. PubMed ID: 38599514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.
    Basgall EM; Goetting SC; Goeckel ME; Giersch RM; Roggenkamp E; Schrock MN; Halloran M; Finnigan GC
    Microbiology (Reading); 2018 Apr; 164(4):464-474. PubMed ID: 29488867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.