These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 3782160)
1. The effects of cerebrosides on model membrane shape. Curatolo W; Neuringer LJ J Biol Chem; 1986 Dec; 261(36):17177-82. PubMed ID: 3782160 [TBL] [Abstract][Full Text] [Related]
2. Effect of divalent cations on the structure of dipalmitoylphosphatidylcholine and phosphatidylcholine/phosphatidylglycerol bilayers: an 2H-NMR study. Zidovetzki R; Atiya AW; De Boeck H Membr Biochem; 1989; 8(3):177-86. PubMed ID: 2561964 [TBL] [Abstract][Full Text] [Related]
3. Effects of lysophosphatidylcholines on phosphatidylcholine and phosphatidylcholine/cholesterol liposome systems as revealed by 31P-NMR, electron microscopy and permeability studies. Van Echteld CJ; De Kruijff B; Mandersloot JG; De Gier J Biochim Biophys Acta; 1981 Dec; 649(2):211-20. PubMed ID: 7317392 [TBL] [Abstract][Full Text] [Related]
4. [Certain physical parameters of cerebroside and phospholipid-cerebroside membranes]. Mkheian EE; Akopov SE; Sotskiĭ OP; Badzhinian SA Biofizika; 1981; 26(1):48-52. PubMed ID: 7225449 [TBL] [Abstract][Full Text] [Related]
5. Haptenic activity of galactosyl ceramide and its topographical distribution on liposomal membranes. I. Effect of cholesterol incorporation. Suzuki T; Utsumi H; Inoue K; Nojima S Biochim Biophys Acta; 1981 Jun; 644(2):183-91. PubMed ID: 6266467 [TBL] [Abstract][Full Text] [Related]
6. A calorimetric study of the thermotropic behaviour of mixtures of brain cerebrosides with other brain lipids. Johnston DS; Chapman D Biochim Biophys Acta; 1988 Apr; 939(3):603-14. PubMed ID: 3355836 [TBL] [Abstract][Full Text] [Related]
7. Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol. Veiga MP; Arrondo JL; Goñi FM; Alonso A; Marsh D Biochemistry; 2001 Feb; 40(8):2614-22. PubMed ID: 11327885 [TBL] [Abstract][Full Text] [Related]
8. Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes. Siminovitch DJ; Ruocco MJ; Olejniczak ET; Das Gupta SK; Griffin RG Biophys J; 1988 Sep; 54(3):373-81. PubMed ID: 3207831 [TBL] [Abstract][Full Text] [Related]
9. Study by infrared spectroscopy of the interdigitation of C26:0 cerebroside sulfate into phosphatidylcholine bilayers. Nabet A; Boggs JM; Pézolet M Biochemistry; 1996 May; 35(21):6674-83. PubMed ID: 8639617 [TBL] [Abstract][Full Text] [Related]
10. Interaction of cholesterol with galactocerebroside and galactocerebroside-phosphatidylcholine bilayer membranes. Ruocco MJ; Shipley GG Biophys J; 1984 Dec; 46(6):695-707. PubMed ID: 6518252 [TBL] [Abstract][Full Text] [Related]
12. A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes. Stockton GW; Smith IC Chem Phys Lipids; 1976 Oct; 17(2-3 SPEC NO):251-63. PubMed ID: 1033045 [TBL] [Abstract][Full Text] [Related]
13. Haptenic activity of galactosyl ceramide and its topographical distribution on liposomal membranes. Effects of temperature and phospholipid composition. Utsumi H; Suzuki T; Inoue K; Nojima S J Biochem; 1984 Jul; 96(1):97-105. PubMed ID: 6092327 [TBL] [Abstract][Full Text] [Related]
14. A structural model for the cholesterol-phosphatidylcholine complexes in bilayer membranes. Huang CH Lipids; 1977 Apr; 12(4):348-56. PubMed ID: 558491 [TBL] [Abstract][Full Text] [Related]
15. Sphingomyelin is much more effective than saturated phosphatidylcholine in excluding unsaturated phosphatidylcholine from domains formed with cholesterol. van Duyl BY; Ganchev D; Chupin V; de Kruijff B; Killian JA FEBS Lett; 2003 Jul; 547(1-3):101-6. PubMed ID: 12860394 [TBL] [Abstract][Full Text] [Related]
16. Langmuir monolayers of cerebroside originated from Linckia laevigata: binary systems of cerebrosides and phospholipid. Maruta T; Hoda K; Inagaki M; Higuchi R; Shibata O Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):123-42. PubMed ID: 16051475 [TBL] [Abstract][Full Text] [Related]
17. Preservation of ultrastructure in phosphatidylcholine vesicles by tannic acid and OsO4. Asami K J Ultrastruct Mol Struct Res; 1986; 95(1-3):38-46. PubMed ID: 3611850 [TBL] [Abstract][Full Text] [Related]
18. Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers. Brown MF; Seelig J Biochemistry; 1978 Jan; 17(2):381-4. PubMed ID: 619997 [TBL] [Abstract][Full Text] [Related]
19. Sodium ion diffusion through liposome membranes containing cerebroside. Liljenfors B; Löfgren H Chem Phys Lipids; 1980; 26(2):111-20. PubMed ID: 7357685 [TBL] [Abstract][Full Text] [Related]
20. Factors affecting surface expression of glycolipids: influence of lipid environment and ceramide composition on antibody recognition of cerebroside sulfate in liposomes. Crook SJ; Boggs JM; Vistnes AI; Koshy KM Biochemistry; 1986 Nov; 25(23):7488-94. PubMed ID: 3801428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]