These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 3782163)
1. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression--influence of age and degeneration. Koeller W; Muehlhaus S; Meier W; Hartmann F J Biomech; 1986; 19(10):807-16. PubMed ID: 3782163 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs. Koeller W; Meier W; Hartmann F Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading. Koeller W; Funke F; Hartmann F Biorheology; 1984; 21(5):675-86. PubMed ID: 6518283 [TBL] [Abstract][Full Text] [Related]
4. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676 [TBL] [Abstract][Full Text] [Related]
5. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846 [TBL] [Abstract][Full Text] [Related]
6. Effect of frozen storage on the creep behavior of human intervertebral discs. Dhillon N; Bass EC; Lotz JC Spine (Phila Pa 1976); 2001 Apr; 26(8):883-8. PubMed ID: 11317110 [TBL] [Abstract][Full Text] [Related]
7. 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Nerlich AG; Schleicher ED; Boos N Spine (Phila Pa 1976); 1997 Dec; 22(24):2781-95. PubMed ID: 9431614 [TBL] [Abstract][Full Text] [Related]
8. Age changes in lumbar intervertebral discs. Twomey L; Taylor J Acta Orthop Scand; 1985 Dec; 56(6):496-9. PubMed ID: 4090952 [TBL] [Abstract][Full Text] [Related]
9. Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Urban JP; McMullin JF Spine (Phila Pa 1976); 1988 Feb; 13(2):179-87. PubMed ID: 3406838 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study. Masni-Azian ; Tanaka M Comput Biol Med; 2018 Jul; 98():26-38. PubMed ID: 29758454 [TBL] [Abstract][Full Text] [Related]
11. An in vitro animal study of the biomechanical responses of anulus fibrosus with aging. Park C; Kim YJ; Lee CS; An K; Shin HJ; Lee CH; Kim CH; Shin JW Spine (Phila Pa 1976); 2005 May; 30(10):E259-65. PubMed ID: 15897815 [TBL] [Abstract][Full Text] [Related]
12. [The deformation behavior of human lumbar intervertebral discs subjected to long term axial dynamic compressive forces (author's transl)]. Köller W; Funke F; Hartmann F Z Orthop Ihre Grenzgeb; 1981 Apr; 119(2):206-16. PubMed ID: 7234089 [TBL] [Abstract][Full Text] [Related]
13. In vitro disc pressure profiles below scoliosis fusion constructs. Buttermann GR; Beaubien BP Spine (Phila Pa 1976); 2008 Sep; 33(20):2134-42. PubMed ID: 18794754 [TBL] [Abstract][Full Text] [Related]
14. Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice. Bailey JF; Hargens AR; Cheng KK; Lotz JC J Biomech; 2014 Sep; 47(12):2983-8. PubMed ID: 25085756 [TBL] [Abstract][Full Text] [Related]
15. Why do some intervertebral discs degenerate, when others (in the same spine) do not? Adams MA; Lama P; Zehra U; Dolan P Clin Anat; 2015 Mar; 28(2):195-204. PubMed ID: 24753325 [TBL] [Abstract][Full Text] [Related]
16. Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls. Weiler C; Nerlich AG; Bachmeier BE; Boos N Spine (Phila Pa 1976); 2005 Jan; 30(1):44-53; discussion 54. PubMed ID: 15626980 [TBL] [Abstract][Full Text] [Related]
17. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load. Ohshima H; Tsuji H; Hirano N; Ishihara H; Katoh Y; Yamada H Spine (Phila Pa 1976); 1989 Nov; 14(11):1234-44. PubMed ID: 2603057 [TBL] [Abstract][Full Text] [Related]
18. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment. Araújo ÂR; Peixinho N; Pinho AC; Claro JC Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study. Takeuchi T; Abumi K; Shono Y; Oda I; Kaneda K Spine (Phila Pa 1976); 1999 Jul; 24(14):1414-20. PubMed ID: 10423785 [TBL] [Abstract][Full Text] [Related]
20. Influences of disc degeneration and bone mineral density on the structural properties of lumbar end plates. Hou Y; Yuan W Spine J; 2012 Mar; 12(3):249-56. PubMed ID: 22366078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]