BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3782163)

  • 1. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression--influence of age and degeneration.
    Koeller W; Muehlhaus S; Meier W; Hartmann F
    J Biomech; 1986; 19(10):807-16. PubMed ID: 3782163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs.
    Koeller W; Meier W; Hartmann F
    Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading.
    Koeller W; Funke F; Hartmann F
    Biorheology; 1984; 21(5):675-86. PubMed ID: 6518283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression.
    Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP
    J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of frozen storage on the creep behavior of human intervertebral discs.
    Dhillon N; Bass EC; Lotz JC
    Spine (Phila Pa 1976); 2001 Apr; 26(8):883-8. PubMed ID: 11317110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs.
    Nerlich AG; Schleicher ED; Boos N
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2781-95. PubMed ID: 9431614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age changes in lumbar intervertebral discs.
    Twomey L; Taylor J
    Acta Orthop Scand; 1985 Dec; 56(6):496-9. PubMed ID: 4090952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration.
    Urban JP; McMullin JF
    Spine (Phila Pa 1976); 1988 Feb; 13(2):179-87. PubMed ID: 3406838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study.
    Masni-Azian ; Tanaka M
    Comput Biol Med; 2018 Jul; 98():26-38. PubMed ID: 29758454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro animal study of the biomechanical responses of anulus fibrosus with aging.
    Park C; Kim YJ; Lee CS; An K; Shin HJ; Lee CH; Kim CH; Shin JW
    Spine (Phila Pa 1976); 2005 May; 30(10):E259-65. PubMed ID: 15897815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The deformation behavior of human lumbar intervertebral discs subjected to long term axial dynamic compressive forces (author's transl)].
    Köller W; Funke F; Hartmann F
    Z Orthop Ihre Grenzgeb; 1981 Apr; 119(2):206-16. PubMed ID: 7234089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro disc pressure profiles below scoliosis fusion constructs.
    Buttermann GR; Beaubien BP
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2134-42. PubMed ID: 18794754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice.
    Bailey JF; Hargens AR; Cheng KK; Lotz JC
    J Biomech; 2014 Sep; 47(12):2983-8. PubMed ID: 25085756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why do some intervertebral discs degenerate, when others (in the same spine) do not?
    Adams MA; Lama P; Zehra U; Dolan P
    Clin Anat; 2015 Mar; 28(2):195-204. PubMed ID: 24753325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls.
    Weiler C; Nerlich AG; Bachmeier BE; Boos N
    Spine (Phila Pa 1976); 2005 Jan; 30(1):44-53; discussion 54. PubMed ID: 15626980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load.
    Ohshima H; Tsuji H; Hirano N; Ishihara H; Katoh Y; Yamada H
    Spine (Phila Pa 1976); 1989 Nov; 14(11):1234-44. PubMed ID: 2603057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study.
    Takeuchi T; Abumi K; Shono Y; Oda I; Kaneda K
    Spine (Phila Pa 1976); 1999 Jul; 24(14):1414-20. PubMed ID: 10423785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of disc degeneration and bone mineral density on the structural properties of lumbar end plates.
    Hou Y; Yuan W
    Spine J; 2012 Mar; 12(3):249-56. PubMed ID: 22366078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.