BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37821727)

  • 1. Phosphoproteomic Analysis Reveals the Predominating Cellular Processes and the Involved Key Phosphoproteins Essential for the Proliferation of Toxoplasma gondii.
    Chen XZ; Bai RX; Qin FY; Peng HJ; Ren JF; Hu L; Li YD; He C
    Acta Parasitol; 2023 Dec; 68(4):820-831. PubMed ID: 37821727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iTRAQ-Based Phosphoproteomic Analysis of
    He C; Xu MZ; Pan S; Wang H; Peng HJ; Liu ZZ
    Front Cell Infect Microbiol; 2020; 10():586466. PubMed ID: 33363051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iTRAQ-based phosphoproteomic analysis reveals host cell's specific responses to Toxoplasma gondii at the phases of invasion and prior to egress.
    He C; Kong L; Puthiyakunnon S; Wei HX; Zhou LJ; Peng HJ
    Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):202-212. PubMed ID: 30576742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteome of
    He C; Chen AY; Wei HX; Feng XS; Peng HJ
    Am J Trop Med Hyg; 2017 Jul; 97(1):236-244. PubMed ID: 28719319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Phosphoproteomic Analysis of Sporulated Oocysts and Tachyzoites of
    Wang ZX; Che L; Hu RS; Sun XL
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164288
    [No Abstract]   [Full Text] [Related]  

  • 6. iTRAQ-Based Phosphoproteomic Analysis Exposes Molecular Changes in the Small Intestinal Epithelia of Cats after
    Zhai B; Meng YM; Xie SC; Peng JJ; Liu Y; Qiu Y; Wang L; Zhang J; He JJ
    Animals (Basel); 2023 Nov; 13(22):. PubMed ID: 38003154
    [No Abstract]   [Full Text] [Related]  

  • 7. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries.
    Treeck M; Sanders JL; Elias JE; Boothroyd JC
    Cell Host Microbe; 2011 Oct; 10(4):410-9. PubMed ID: 22018241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxoplasma gondii Proliferation Require Down-Regulation of Host Nox4 Expression via Activation of PI3 Kinase/Akt Signaling Pathway.
    Zhou W; Quan JH; Lee YH; Shin DW; Cha GH
    PLoS One; 2013; 8(6):e66306. PubMed ID: 23824914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Characterization of 15 Novel Dense Granule Proteins in Toxoplasma gondii Using the CRISPR-Cas9 System.
    Zheng XN; Wang JL; Elsheikha HM; Wang M; Zhang ZW; Sun LX; Wang XC; Zhu XQ; Li TT
    Microbiol Spectr; 2023 Feb; 11(1):e0307822. PubMed ID: 36515555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PP2Acα-B'/PR61 Holoenzyme of Toxoplasma gondii Is Required for the Amylopectin Metabolism and Proliferation of Tachyzoites.
    Zhao M; Yang Y; Shi Y; Chen X; Yang Y; Pan L; Du Z; Sun H; Yao C; Ma G; Du A
    Microbiol Spectr; 2023 Jun; 11(3):e0010423. PubMed ID: 37199633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome analysis of normal and CD44-deleted mouse brain under chronic infection with Toxoplasma gondii.
    Li S; He B; Yang C; Yang J; Wang L; Duan X; Deng X; Zhao J; Fang R
    Acta Trop; 2020 Oct; 210():105589. PubMed ID: 32544399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iTRAQ-Based Global Phosphoproteomics Reveals Novel Molecular Differences Between
    Wang ZX; Zhou CX; Calderón-Mantilla G; Petsalaki E; He JJ; Song HY; Elsheikha HM; Zhu XQ
    Front Cell Infect Microbiol; 2019; 9():307. PubMed ID: 31508380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteomic Comparison of Four
    Ma X; Liu B; Gong Z; Qu Z; Cai J
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34829991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a Toxoplasma gondii calcium calmodulin-dependent protein kinase homolog.
    Kato K; Sugi T; Takemae H; Takano R; Gong H; Ishiwa A; Horimoto T; Akashi H
    Parasit Vectors; 2016 Jul; 9(1):405. PubMed ID: 27444499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxoplasma gondii down-regulates MHC class II gene expression and antigen presentation by murine macrophages via interference with nuclear translocation of STAT1alpha.
    Lüder CG; Walter W; Beuerle B; Maeurer MJ; Gross U
    Eur J Immunol; 2001 May; 31(5):1475-84. PubMed ID: 11465104
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Sugi T; Tu V; Ma Y; Tomita T; Weiss LM
    mBio; 2017 Aug; 8(4):. PubMed ID: 28851850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global phosphoproteome analysis reveals significant differences between sporulated oocysts of virulent and avirulent strains of Toxoplasma gondii.
    Wang ZX; Hu RS; Zhu XQ; Sun XL; Elsheikha HM
    Microb Pathog; 2021 Dec; 161(Pt A):105240. PubMed ID: 34655729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional changes in Toxoplasma gondii in response to treatment with monensin.
    Zhai B; He JJ; Elsheikha HM; Li JX; Zhu XQ; Yang X
    Parasit Vectors; 2020 Feb; 13(1):84. PubMed ID: 32070423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster analysis of splenocyte microRNAs in the pig reveals key signal regulators of immunomodulation in the host during acute and chronic Toxoplasma gondii infection.
    Hou Z; Zhang H; Xu K; Zhu S; Wang L; Su D; Liu J; Su S; Liu D; Huang S; Xu J; Pan Z; Tao J
    Parasit Vectors; 2022 Feb; 15(1):58. PubMed ID: 35177094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein phosphorylation during the process of interaction of Toxoplasma gondii with host cells.
    Ferreira S; De Carvalho TM; De Souza W
    J Submicrosc Cytol Pathol; 2003 Jul; 35(3):245-52. PubMed ID: 14690172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.