BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 37821742)

  • 41. Multiplex Raman induced Kerr effect microscopy.
    Bachler BR; Fermann ME; Ogilvie JP
    Opt Express; 2012 Jan; 20(2):835-44. PubMed ID: 22274429
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Live-cell bioorthogonal Raman imaging.
    Hong S; Lin L; Xiao M; Chen X
    Curr Opin Chem Biol; 2015 Feb; 24():91-6. PubMed ID: 25461727
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope.
    Lin P; Ni H; Li H; Vickers NA; Tan Y; Gong R; Bifano T; Cheng JX
    Opt Express; 2020 Sep; 28(20):30210-30221. PubMed ID: 33114904
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple Parallel Fusion Network for Predicting Protein Subcellular Localization from Stimulated Raman Scattering (SRS) Microscopy Images in Living Cells.
    Wei Z; Liu W; Yu W; Liu X; Yan R; Liu Q; Guo Q
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142736
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative Drug Dynamics Visualized by Alkyne-Tagged Plasmonic-Enhanced Raman Microscopy.
    Koike K; Bando K; Ando J; Yamakoshi H; Terayama N; Dodo K; Smith NI; Sodeoka M; Fujita K
    ACS Nano; 2020 Nov; 14(11):15032-15041. PubMed ID: 33079538
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multicolor Raman Beads for Multiplexed Tumor Cell and Tissue Imaging and in Vivo Tumor Spectral Detection.
    Jin Q; Fan X; Chen C; Huang L; Wang J; Tang X
    Anal Chem; 2019 Mar; 91(6):3784-3789. PubMed ID: 30758186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hyperspectral CARS microscopy and quantitative unsupervised analysis of deuterated and non-deuterated fatty acid storage in human cells.
    Boorman D; Pope I; Masia F; Langbein W; Hood S; Borri P; Watson P
    J Chem Phys; 2021 Dec; 155(22):224202. PubMed ID: 34911324
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stimulated Raman versus Inverse Raman: Investigating Depletion Mechanisms for Super-Resolution Raman Microscopy.
    Leighton RE; Alperstein AM; Punihaole D; Silva WR; Frontiera RR
    J Phys Chem B; 2023 Jan; 127(1):26-36. PubMed ID: 36576851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.
    Chen M; Zhang L; Yang B; Gao M; Zhang X
    Anal Bioanal Chem; 2018 Mar; 410(8):2203-2210. PubMed ID: 29396584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Practical considerations for quantitative and reproducible measurements with stimulated Raman scattering microscopy.
    Tsikritsis D; Legge EJ; Belsey NA
    Analyst; 2022 Oct; 147(21):4642-4656. PubMed ID: 35997002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomedical applications, perspectives and tag design concepts in the cell - silent Raman window.
    Vardaki MZ; Gregoriou VG; Chochos CL
    RSC Chem Biol; 2024 Apr; 5(4):273-292. PubMed ID: 38576725
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters.
    Xiao M; Lin L; Li Z; Liu J; Hong S; Li Y; Zheng M; Duan X; Chen X
    Chem Asian J; 2014 Aug; 9(8):2040-4. PubMed ID: 24942101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy.
    Zhang X; Roeffaers MB; Basu S; Daniele JR; Fu D; Freudiger CW; Holtom GR; Xie XS
    Chemphyschem; 2012 Mar; 13(4):1054-9. PubMed ID: 22368112
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis.
    Wang K; Zhang D; Charan K; Slipchenko MN; Wang P; Xu C; Cheng JX
    J Biophotonics; 2013 Oct; 6(10):815-20. PubMed ID: 23840041
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study.
    Duboisset J; Berto P; Gasecka P; Bioud FZ; Ferrand P; Rigneault H; Brasselet S
    J Phys Chem B; 2015 Feb; 119(7):3242-9. PubMed ID: 25602288
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-encoded stimulated Raman scattering microscopy of tumorous human pharynx tissue in the fingerprint region from 1500-1800  cm
    Hakert H; Eibl M; Tillich M; Pries R; Hüttmann G; Brinkmann R; Wollenberg B; Bruchhage KL; Karpf S; Huber R
    Opt Lett; 2021 Jul; 46(14):3456-3459. PubMed ID: 34264237
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Imaging the invisible-Bioorthogonal Raman probes for imaging of cells and tissues.
    Azemtsop Matanfack G; Rüger J; Stiebing C; Schmitt M; Popp J
    J Biophotonics; 2020 Sep; 13(9):e202000129. PubMed ID: 32475014
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological imaging of chemical bonds by stimulated Raman scattering microscopy.
    Hu F; Shi L; Min W
    Nat Methods; 2019 Sep; 16(9):830-842. PubMed ID: 31471618
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transient stimulated Raman scattering spectroscopy and imaging.
    Yu Q; Yao Z; Zhou J; Yu W; Zhuang C; Qi Y; Xiong H
    Light Sci Appl; 2024 Mar; 13(1):70. PubMed ID: 38453917
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of chemical disposition in skin by stimulated Raman scattering microscopy.
    Zarmpi P; Tsikritsis D; Vorng JL; Belsey NA; Bunge AL; Woodman TJ; Delgado-Charro MB; Guy RH
    J Control Release; 2024 Apr; 368():797-807. PubMed ID: 38350493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.