These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 37821760)

  • 1. Surfactin inhibits Fusarium graminearum by accumulating intracellular ROS and inducing apoptosis mechanisms.
    Liang C; Xi-Xi X; Yun-Xiang S; Qiu-Hua X; Yang-Yong L; Yuan-Sen H; Ke B
    World J Microbiol Biotechnol; 2023 Oct; 39(12):340. PubMed ID: 37821760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillomycin D Produced by Bacillus amyloliquefaciens Is Involved in the Antagonistic Interaction with the Plant-Pathogenic Fungus Fusarium graminearum.
    Gu Q; Yang Y; Yuan Q; Shi G; Wu L; Lou Z; Huo R; Wu H; Borriss R; Gao X
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733288
    [No Abstract]   [Full Text] [Related]  

  • 3. Antifungal Activity and Mechanism of 4-Propylphenol Against
    Sun S; Tang N; Han K; You J; Liu A; Wang Q; Xu Q
    J Agric Food Chem; 2024 Mar; 72(10):5258-5268. PubMed ID: 38430124
    [No Abstract]   [Full Text] [Related]  

  • 4. Antifungal efficacy of Bacillus amyloliquefaciens ZK-9 against Fusarium graminearum and analysis of the potential mechanism of its lipopeptides.
    Yi Y; Luan P; Fan M; Wu X; Sun Z; Shang Z; Yang Y; Li C
    Int J Food Microbiol; 2024 Sep; 422():110821. PubMed ID: 38970998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edeine B
    Kim B; Nguyen MV; Park J; Kim YS; Han JW; Lee J-Y; Jeon J; Son H; Choi GJ; Kim H
    mBio; 2024 Jul; 15(7):e0135124. PubMed ID: 38860787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight.
    Chen L; Heng J; Qin S; Bian K
    PLoS One; 2018; 13(6):e0198560. PubMed ID: 29856856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemosensitization of
    Kim K; Lee Y; Ha A; Kim JI; Park AR; Yu NH; Son H; Choi GJ; Park HW; Lee CW; Lee T; Lee YW; Kim JC
    Front Plant Sci; 2017; 8():2010. PubMed ID: 29230232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus
    Jian Y; Chen X; Ahmed T; Shang Q; Zhang S; Ma Z; Yin Y
    J Adv Res; 2022 May; 38():1-12. PubMed ID: 35572400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat.
    Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T
    Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Endophytic
    Gao M; Abdallah MF; Song M; Xu Y; Sun D; Lu P; Wang J
    Toxins (Basel); 2023 Dec; 15(12):. PubMed ID: 38133206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium graminearum.
    Deshaies M; Lamari N; Ng CKY; Ward P; Doohan FM
    BMC Plant Biol; 2022 Feb; 22(1):73. PubMed ID: 35183130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusarium graminearum effector FgEC1 targets wheat TaGF14b protein to suppress TaRBOHD-mediated ROS production and promote infection.
    Shang S; He Y; Hu Q; Fang Y; Cheng S; Zhang CJ
    J Integr Plant Biol; 2024 Oct; 66(10):2288-2303. PubMed ID: 39109951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocontrol of
    Yeo YJ; Park AR; Vuong BS; Kim JC
    Front Microbiol; 2024; 15():1358689. PubMed ID: 38915299
    [No Abstract]   [Full Text] [Related]  

  • 14. Genome-Wide Characterization of PX Domain-Containing Proteins Involved in Membrane Trafficking-Dependent Growth and Pathogenicity of Fusarium graminearum.
    Lou Y; Zhang J; Wang G; Fang W; Wang S; Abubakar YS; Zhou J; Wang Z; Zheng W
    mBio; 2021 Dec; 12(6):e0232421. PubMed ID: 34933449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thymol-based submicron emulsions exhibit antifungal activity against Fusarium graminearum and inhibit Fusarium head blight in wheat.
    Gill TA; Li J; Saenger M; Scofield SR
    J Appl Microbiol; 2016 Oct; 121(4):1103-16. PubMed ID: 27253757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum.
    Jung B; Park SY; Lee YW; Lee J
    Plant Pathol J; 2013 Mar; 29(1):52-8. PubMed ID: 25288928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Wheat Fusarium Head Blight by Heat-Stable Antifungal Factor (HSAF) from
    Zhao Y; Cheng C; Jiang T; Xu H; Chen Y; Ma Z; Qian G; Liu F
    Plant Dis; 2019 Jun; 103(6):1286-1292. PubMed ID: 30995421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the biocontrol mechanism of a novel
    Dai J; Xu Z; Yang N; Tuerxunjiang H; Shan X; Diao Y; Zhao J; Ma M; Li X; Xiao M; Pei J
    Appl Environ Microbiol; 2024 Jun; 90(6):e0045524. PubMed ID: 38809045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide modification enhances the activity of chitosan against Fusarium graminearum in vitro and in vivo.
    Zhang W; Cheng C; Wang R; Peng F; Du H; Zheng Z; Hou W; Yang Y; Wang X; Deng Y
    Int J Biol Macromol; 2022 Oct; 219():1112-1121. PubMed ID: 36049564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance.
    Li J; Duan Y; Bian C; Pan X; Yao C; Wang J; Zhou M
    Pestic Biochem Physiol; 2019 Jan; 153():152-160. PubMed ID: 30744889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.