These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37821767)

  • 1. Mitigation of Tribocharging in Pharmaceutical Powders using Surface Modified V-Blenders.
    Mehta T; Mukherjee R; Shah A; Mastriani T; Duran T; Chaudhuri B
    Pharm Res; 2023 Oct; 40(10):2371-2381. PubMed ID: 37821767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of Tribocharging of Pharmaceutical Powders in V-Blenders: Experiments, Multiscale Modeling, and Simulations.
    Naik S; Hancock B; Abramov Y; Yu W; Rowland M; Huang Z; Chaudhuri B
    J Pharm Sci; 2016 Apr; 105(4):1467-77. PubMed ID: 26921122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of Moisture-Induced Cohesion in Pharmaceutical Mixtures.
    Mukherjee R; Sen K; Fontana L; Mao C; Chaudhuri B
    J Pharm Sci; 2019 Jan; 108(1):223-233. PubMed ID: 30017891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triboelectrification: A review of experimental and mechanistic modeling approaches with a special focus on pharmaceutical powders.
    Naik S; Mukherjee R; Chaudhuri B
    Int J Pharm; 2016 Aug; 510(1):375-85. PubMed ID: 27353731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simplex Centroid Design to Quantify Triboelectric Charging in Pharmaceutical Mixtures.
    Mukherjee R; Halder A; Sansare S; Naik S; Chaudhuri B
    J Pharm Sci; 2020 May; 109(5):1765-1771. PubMed ID: 32105661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete Element Modeling (DEM) based investigation of tribocharging in the pharmaceutical powders during hopper discharge.
    Mukherjee R; Sansare S; Nagarajan V; Chaudhuri B
    Int J Pharm; 2021 Mar; 596():120284. PubMed ID: 33508346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation into powder tribo-charging of pharmaceuticals. Part I: Process-induced charge via twin-screw feeding.
    Beretta M; Hörmann TR; Hainz P; Hsiao WK; Paudel A
    Int J Pharm; 2020 Dec; 591():120014. PubMed ID: 33122114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined experimental and numerical approach to explore tribocharging of pharmaceutical excipients in a hopper chute assembly.
    Naik S; Sarkar S; Gupta V; Hancock BC; Abramov Y; Yu W; Chaudhuri B
    Int J Pharm; 2015 Aug; 491(1-2):58-68. PubMed ID: 26043824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrostatic charging on pharmaceutical powder blending homogeneity.
    Pu Y; Mazumder M; Cooney C
    J Pharm Sci; 2009 Jul; 98(7):2412-21. PubMed ID: 18855912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modified Kushner-Moore approach to characterising small-scale blender performance impact on tablet compaction.
    Jolliffe HG; Prostredny M; Mendez Torrecillas C; Bordos E; Tierney C; Ojo E; Elkes R; Reynolds G; Li Song Y; Meir B; Fathollahi S; Robertson J
    Int J Pharm; 2024 Jun; 659():124232. PubMed ID: 38759740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic powder coating: Principles and pharmaceutical applications.
    Prasad LK; McGinity JW; Williams RO
    Int J Pharm; 2016 May; 505(1-2):289-302. PubMed ID: 27085644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Electrostatics on Processing and Product Performance of Pharmaceutical Solids.
    Desai PM; Tan BM; Liew CV; Chan LW; Heng PW
    Curr Pharm Des; 2015; 21(40):5923-9. PubMed ID: 26446470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of crystallinity on electrostatic charging in dry powder inhaler formulations.
    Wong J; Kwok PC; Noakes T; Fathi A; Dehghani F; Chan HK
    Pharm Res; 2014 Jul; 31(7):1656-64. PubMed ID: 24464269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid multi-zonal compartment modeling for continuous powder blending processes.
    Bhalode P; Ierapetritou M
    Int J Pharm; 2021 Jun; 602():120643. PubMed ID: 33901598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of contamination of pharmaceutical equipment on powder triboelectrification.
    Eilbeck J; Rowley G; Carter PA; Fletcher EJ
    Int J Pharm; 2000 Feb; 195(1-2):7-11. PubMed ID: 10675675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of detergent on powder triboelectrification.
    Murtomaa M; Ojanen K; Laine E; Poutanen J
    Eur J Pharm Sci; 2002 Dec; 17(4-5):195-9. PubMed ID: 12453608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explaining electrostatic charging and flow of surface-modified acetaminophen powders as a function of relative humidity through surface energetics.
    Jallo LJ; Dave RN
    J Pharm Sci; 2015 Jul; 104(7):2225-32. PubMed ID: 25974039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Chemistry and Humidity in Powder Electrostatics: A Comparative Study between Tribocharging and Corona Discharge.
    Biegaj KW; Rowland MG; Lukas TM; Heng JYY
    ACS Omega; 2017 Apr; 2(4):1576-1582. PubMed ID: 31457523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chargeability measurements of selected pharmaceutical dry powders to assess their electrostatic charge control capabilities.
    Ramirez-Dorronsoro JC; Jacko RB; Kildsig DO
    AAPS PharmSciTech; 2006; 7(4):103. PubMed ID: 17285749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method to assess the quality of additive manufacturing metal powders using the triboelectric charging concept.
    Galindo E; Espiritu ERL; Gutierrez C; Alagha AN; Hudon P; Brochu M
    Sci Rep; 2024 Jul; 14(1):16439. PubMed ID: 39014049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.