These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 3782180)

  • 41. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications.
    Xiong J; Li Y; Wang X; Hodgson P; Wen C
    Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fractographic analysis of failed porous and surface-coated cobalt-chromium alloy total joint replacements.
    Kohn DH; Ducheyne P; Cuckler JM; Chu AC; Radin S
    Med Prog Technol; 1994; 20(3-4):169-77. PubMed ID: 7877561
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns.
    Ucar Y; Akova T; Akyil MS; Brantley WA
    J Prosthet Dent; 2009 Oct; 102(4):253-9. PubMed ID: 19782828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanical properties of cast Ti-6Al-4V-XCu alloys.
    Aoki T; Okafor IC; Watanabe I; Hattori M; Oda Y; Okabe T
    J Oral Rehabil; 2004 Nov; 31(11):1109-14. PubMed ID: 15525390
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tensile bond strength of cast commercially pure titanium and cast gold-alloy posts and cores cemented with two luting agents.
    Menani LR; Ribeiro RF; Antunes RP
    J Prosthet Dent; 2008 Feb; 99(2):141-7. PubMed ID: 18262015
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adherent octacalciumphosphate coating on titanium alloy using modulated electrochemical deposition method.
    Lin S; LeGeros RZ; LeGeros JP
    J Biomed Mater Res A; 2003 Sep; 66(4):819-28. PubMed ID: 12926034
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants.
    Cook SD; Walsh KA; Haddad RJ
    Clin Orthop Relat Res; 1985 Mar; (193):271-80. PubMed ID: 3971631
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of repetitive loading on the integrity of porous coatings.
    Manley MT; Kotzar G; Stern LS; Wilde A
    Clin Orthop Relat Res; 1987 Apr; (217):293-302. PubMed ID: 3829510
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bond strength of three porcelains to two forms of titanium using two firing atmospheres.
    Atsü S; Berksun S
    J Prosthet Dent; 2000 Nov; 84(5):567-74. PubMed ID: 11105013
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.
    Vamsi Krishna B; Xue W; Bose S; Bandyopadhyay A
    Acta Biomater; 2008 May; 4(3):697-706. PubMed ID: 18054298
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solution treatment behavior of Co-Cr-Mo alloy.
    Clemow AJ; Daniell BL
    J Biomed Mater Res; 1979 Mar; 13(2):265-79. PubMed ID: 429394
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of test protocol variables for dental implant fatigue research.
    Lee CK; Karl M; Kelly JR
    Dent Mater; 2009 Nov; 25(11):1419-25. PubMed ID: 19646746
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols.
    Guilherme AS; Henriques GE; Zavanelli RA; Mesquita MF
    J Prosthet Dent; 2005 Apr; 93(4):378-85. PubMed ID: 15798689
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fatigue property of a bioabsorbable magnesium alloy with a hydroxyapatite coating formed by a chemical solution deposition.
    Hiromoto S; Tomozawa M; Maruyama N
    J Mech Behav Biomed Mater; 2013 Sep; 25():1-10. PubMed ID: 23727947
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical properties of the binary titanium-zirconium alloys and their potential for biomedical materials.
    Kobayashi E; Matsumoto S; Doi H; Yoneyama T; Hamanaka H
    J Biomed Mater Res; 1995 Aug; 29(8):943-50. PubMed ID: 7593037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro evaluation of the bonding of auto-polymerizing soft denture liner to cobalt-chromium alloy.
    Minami H; Suzuki S; Ohashi H; Minesaki Y; Tanaka T
    J Oral Rehabil; 2005 Jun; 32(6):454-60. PubMed ID: 15899025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Performance analysis of total hip prostheses: some particular metallurgical observations.
    Ducheyne P; De Meester P; Aernoudt E
    J Biomed Mater Res; 1980 Jan; 14(1):31-40. PubMed ID: 7358739
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of thermal and mechanical cycling on the flexural strength of ceramics with titanium or gold alloy frameworks.
    Oyafuso DK; Ozcan M; Bottino MA; Itinoche MK
    Dent Mater; 2008 Mar; 24(3):351-6. PubMed ID: 17688935
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High strength Co-Cr-Mo alloy by hot isostatic pressing of powder.
    Bardos DI
    Biomater Med Devices Artif Organs; 1979; 7(1):73-80. PubMed ID: 454784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.