BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 37822154)

  • 1. Mild-Photothermal Effect Induced High Efficiency Ferroptosis-Boosted-Cuproptosis Based on Cu
    Chen W; Xie W; Gao Z; Lin C; Tan M; Zhang Y; Hou Z
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303694. PubMed ID: 37822154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AuPt-Loaded Cu-Doped Polydopamine Nanocomposites with Multienzyme-Mimic Activities for Dual-Modal Imaging-Guided and Cuproptosis-Enhanced Photothermal/Nanocatalytic Therapy.
    Wang YY; Zhang XY; Li SL; Jiang FL; Jiang P; Liu Y
    Anal Chem; 2023 Sep; 95(37):14025-14035. PubMed ID: 37694580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-situ fabrication of novel Au nanoclusters-Cu
    Yang Z; Zhao Z; Cheng H; Shen Y; Xie A; Zhu M
    J Colloid Interface Sci; 2023 Jul; 641():215-228. PubMed ID: 36933468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered Microbial Nanohybrids for Tumor-Mediated NIR II Photothermal Enhanced Ferroptosis/Cuproptosis and Immunotherapy.
    Ruan Y; Zhuang H; Zeng X; Lin L; Wang X; Xue P; Xu S; Chen Q; Yan S; Huang W
    Adv Healthc Mater; 2024 Feb; 13(4):e2302537. PubMed ID: 37742322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor Microenvironment-Activated Nanostructure to Enhance MRI Capability and Nanozyme Activity for Highly Tumor-Specific Multimodal Theranostics.
    Xie W; Gan Y; Wang L; Si Y; Li Q; Song T; Wei P; Wu Z; Zhang G
    Small; 2024 Apr; 20(14):e2306446. PubMed ID: 38105592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NaYF
    Chen Y; Li H; Hou B; Wu A; Wu W; Li C; Wang H; Chen D; Wang X
    Small; 2024 Jan; 20(1):e2304438. PubMed ID: 37661593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tumor microenvironment-responsive core-shell tecto dendrimer nanoplatform for magnetic resonance imaging-guided and cuproptosis-promoted chemo-chemodynamic therapy.
    Ni C; Ouyang Z; Li G; Liu J; Cao X; Zheng L; Shi X; Guo R
    Acta Biomater; 2023 Jul; 164():474-486. PubMed ID: 37040813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Atom Pd Nanozyme for Ferroptosis-Boosted Mild-Temperature Photothermal Therapy.
    Chang M; Hou Z; Wang M; Yang C; Wang R; Li F; Liu D; Peng T; Li C; Lin J
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12971-12979. PubMed ID: 33772996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amorphous NiB@IrO
    Wang Q; Shaik F; Lu X; Zhang W; Wu Y; Qian H; Zhang W
    Acta Biomater; 2023 Jan; 155():575-587. PubMed ID: 36374661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Nanozymes for Tumor Therapy via Ferroptosis Self-Amplification.
    Liu S; Wei Y; Liang Y; Du P; Lei P; Yu D; Zhang H
    Adv Healthc Mater; 2024 Apr; ():e2400307. PubMed ID: 38573778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Site Nanozymes with a Highly Conjugated Coordination Structure for Antitumor Immunotherapy via Cuproptosis and Cascade-Enhanced T Lymphocyte Activity.
    Liu Y; Niu R; Zhao H; Wang Y; Song S; Zhang H; Zhao Y
    J Am Chem Soc; 2024 Feb; 146(6):3675-3688. PubMed ID: 38305736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Synthesis of Trimetallic Nanozyme for Sustainable Cascaded Catalytic Therapy via Tumor Microenvironment Remodulation.
    Jia X; Wang J; Wang E
    Adv Mater; 2024 Feb; 36(7):e2309261. PubMed ID: 38016341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia.
    Lv W; Cao M; Liu J; Hei Y; Bai J
    Acta Biomater; 2021 Nov; 135():617-627. PubMed ID: 34407474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional Sr/Se co-doped ZIF-8 nanozyme for chemo/chemodynamic synergistic tumor therapy
    Wu A; Han M; Ni Z; Li H; Chen Y; Yang Z; Feng Y; He Z; Zhen H; Wang X
    Theranostics; 2024; 14(5):1939-1955. PubMed ID: 38505601
    [No Abstract]   [Full Text] [Related]  

  • 15. DNAzyme-Mediated Cascade Nanoreactor for Cuproptosis-Promoted Pancreatic Cancer Synergistic Therapy.
    Yu Q; Zhou J; Liu Y; Li XQ; Li S; Zhou H; Kang B; Chen HY; Xu JJ
    Adv Healthc Mater; 2023 Nov; 12(28):e2301429. PubMed ID: 37548109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembled Copper-Based Nanoparticles for Glutathione Activated and Enzymatic Cascade-Enhanced Ferroptosis and Immunotherapy in Cancer Treatment.
    Song WF; Zeng JY; Ji P; Han ZY; Sun YX; Zhang XZ
    Small; 2023 Aug; 19(35):e2301148. PubMed ID: 37118853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor Microenvironment Responsive Hollow Nanoplatform for Triple Amplification of Oxidative Stress to Enhance Cuproptosis-Based Synergistic Cancer Therapy.
    Xu W; Wang Y; Hou G; Wang J; Wang T; Qian J; Suo A
    Adv Healthc Mater; 2023 May; 12(13):e2202949. PubMed ID: 36716523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione Induced In situ Synthesis of Cu Single-Atom Nanozymes with Anaerobic Glycolysis Metabolism Interference for Boosting Cuproptosis.
    Zhang W; Wang M; Liu B; Chen H; Tan J; Meng Q; Li J; Ding B; Ma P; Lin J
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202402397. PubMed ID: 38389036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination Self-Assembled AuTPyP-Cu Metal-Organic Framework Nanosheets with pH/Ultrasound Dual-Responsiveness for Synergistically Triggering Cuproptosis-Augmented Chemotherapy.
    Bao J; Wang J; Chen S; Liu S; Wang Z; Zhang W; Zhao C; Sha Y; Yang X; Li Y; Zhong Y; Bai F
    ACS Nano; 2024 Mar; 18(12):9100-9113. PubMed ID: 38478044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photothermal nanozyme-ignited Fenton reaction-independent ferroptosis for breast cancer therapy.
    Xing L; Liu XY; Zhou TJ; Wan X; Wang Y; Jiang HL
    J Control Release; 2021 Nov; 339():14-26. PubMed ID: 34547257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.