BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37822859)

  • 1. Design of Cr-Free Promoted Copper-Iron Oxide-Based High-Temperature Water-Gas Shift Catalysts.
    Yalcin O; Sourav S; Wachs IE
    ACS Catal; 2023 Oct; 13(19):12681-12691. PubMed ID: 37822859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong Metal-Support Interactions between Copper and Iron Oxide during the High-Temperature Water-Gas Shift Reaction.
    Zhu M; Tian P; Kurtz R; Lunkenbein T; Xu J; Schlögl R; Wachs IE; Han YF
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9083-9087. PubMed ID: 31074080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.
    Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Kaolin-Based Ni Catalysts for CO
    Aimdate K; Srifa A; Koo-Amornpattana W; Sakdaronnarong C; Klysubun W; Kiatphuengporn S; Assabumrungrat S; Wongsakulphasatch S; Kaveevivitchai W; Sudoh M; Watanabe R; Fukuhara C; Ratchahat S
    ACS Omega; 2021 Jun; 6(21):13779-13794. PubMed ID: 34095670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete oxidation of volatile organic compounds over Ce/Cu/gamma-AL2O3 catalyst.
    Kim SC; Shim WG
    Environ Technol; 2008 May; 29(5):535-42. PubMed ID: 18661737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study.
    Bulavchenko OA; Vinokurov ZS; Saraev AA; Tsapina AM; Trigub AL; Gerasimov EY; Gladky AY; Fedorov AV; Yakovlev VA; Kaichev VV
    Inorg Chem; 2019 Apr; 58(8):4842-4850. PubMed ID: 30946575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The activation of gold and the water-gas shift reaction: insights from studies with model catalysts.
    Rodriguez JA; Senanayake SD; Stacchiola D; Liu P; Hrbek J
    Acc Chem Res; 2014 Mar; 47(3):773-82. PubMed ID: 24191672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoted dispersion and uniformity of active species on Fe-Ce-Al catalysts for efficient NO abatement.
    Wang X; Jiang C; Wang J; Gui K; Thomas HR
    RSC Adv; 2019 Oct; 9(61):35751-35759. PubMed ID: 35528103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of cerium doping on Cu-Ni/activated carbon low-temperature CO-SCR denitration catalysts.
    Wang D; Huang B; Shi Z; Long H; Li L; Yang Z; Dai M
    RSC Adv; 2021 May; 11(30):18458-18467. PubMed ID: 35480934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured Cu(x)Ce1-xO2-y mixed oxide catalysts: characterization and WGS activity tests.
    Pintar A; Batista J; Hocevar S
    J Colloid Interface Sci; 2007 Mar; 307(1):145-57. PubMed ID: 17188286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.
    Lu H; Kong X; Huang H; Zhou Y; Chen Y
    J Environ Sci (China); 2015 Jun; 32():102-7. PubMed ID: 26040736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of Catalytic Combustion of Dioxins on Ce-V-Ti Catalysts Modified by Graphene Oxide in Simulating Iron Ore Sintering Flue Gas.
    Shi Q; Long D; Long HM; Chun TJ
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31888069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria.
    Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernández-García M
    J Phys Chem B; 2006 Jan; 110(1):428-34. PubMed ID: 16471552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Ce-MnO
    Yang J; Li J; Kang J; Liu W; Kuang Y; Tan H; Yu Z; Yang L; Yang X; Yu K; Fan Y
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of low-temperature selective catalytic reduction of NO
    Ge T; Zhu B; Sun Y; Song W; Fang Q; Zhong Y
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33067-33075. PubMed ID: 31512139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Performance of Supported Bimetallic Catalysts for Complete Oxidation of Toluene.
    Jung SC; Park YK; Jung HY; Kim SC
    J Nanosci Nanotechnol; 2021 Jul; 21(7):4060-4066. PubMed ID: 33715745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of low-temperature NH
    Sun X; Liu Q; Liu S; Zhang X; Liu S
    RSC Adv; 2021 Jun; 11(37):22780-22788. PubMed ID: 35480444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of titania structure on the properties of its supported copper oxide catalysts.
    Zhu H; Dong L; Chen Y
    J Colloid Interface Sci; 2011 May; 357(2):497-503. PubMed ID: 21392779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous catalytic oxidation of Hg
    Yu H; Zhang Y; Quan H; Zhu D; Liao S; Gao C; Yang R; Zhang Z; Ma Q
    RSC Adv; 2023 Jan; 13(6):3958-3970. PubMed ID: 36756548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.