These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37822859)

  • 21. Study on the effect of Ce-Cu doping on Mn/γ-Al
    Nie W; Yan X; Yu F; Bao Q; Li N; Zhou W; Niu W; Tian Q
    Environ Geochem Health; 2023 Jul; 45(7):5357-5369. PubMed ID: 37133769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of promoter on the catalytic activity of high performance Pd/PATP catalysts.
    Han W; Zhang P; Pan X; Tang Z; Lu G
    J Hazard Mater; 2013 Dec; 263 Pt 2():299-306. PubMed ID: 24225591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.
    Xu C; Liu J; Zhao Z; Yu F; Cheng K; Wei Y; Duan A; Jiang G
    J Environ Sci (China); 2015 May; 31():74-80. PubMed ID: 25968261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidating the structure, redox properties and active entities of high-temperature thermally aged CuO
    Qiu Z; Guo X; Mao J; Zhou R
    Phys Chem Chem Phys; 2021 Jul; 23(29):15582-15590. PubMed ID: 34259269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimum Preferential Oxidation Performance of CeO
    Ding J; Li L; Li H; Chen S; Fang S; Feng T; Li G
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7935-7945. PubMed ID: 29425017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ozone catalytic oxidation of low-concentration formaldehyde over ternary Mn-Ce-Ni oxide catalysts modified with FeO
    Liu RY; Man Trinh M; Chuang HT; Chang MB
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):32696-32709. PubMed ID: 36469276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cu supported on mesoporous ceria: water gas shift activity at low Cu loadings through metal-support interactions.
    Vovchok D; Guild CJ; Llorca J; Xu W; Jafari T; Toloueinia P; Kriz D; Waluyo I; Palomino RM; Rodriguez JA; Suib SL; Senanayake SD
    Phys Chem Chem Phys; 2017 Jul; 19(27):17708-17717. PubMed ID: 28653713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of copper in catalytic performance of a Fe-Cu-Al-O catalyst for water gas shift reaction.
    Ye Y; Wang L; Zhang S; Zhu Y; Shan J; Tao FF
    Chem Commun (Camb); 2013 May; 49(39):4385-7. PubMed ID: 23323268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of Interaction Components on the NO
    Cai H; Zhang X; Wang P; Li K; Shao H; Liu G; Qiao G
    J Nanosci Nanotechnol; 2019 Jul; 19(7):4039-4045. PubMed ID: 30764967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of mass ratio on micro-mesoporous Cu-SSZ-13/CeWTi composite catalysts for the selective catalytic reduction of NO with ammonia.
    Zhao W; Shen M; Zhu Y; Wang D; Li X
    RSC Adv; 2021 Jul; 11(40):24883-24891. PubMed ID: 35481030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Ni-Mo/Al2O3 catalyst for reverse water gas shift (RWGS) reaction.
    Kharaji AG; Shariati A; Ostadi M
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6841-7. PubMed ID: 25924339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis, characterization, and methanol steam reforming performance of Cu/perovskite-structured catalysts.
    Mortazavi-Manesh A; Safari N; Bahadoran F; Khani Y
    Heliyon; 2023 Mar; 9(3):e13742. PubMed ID: 36873539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of controlling nano-sized copper by silver in copper-based catalyst on catalytic oxidation of toluene.
    Kim SC; Moon JH
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1660-3. PubMed ID: 21456261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The selective catalytic reduction of NO over Ce
    Duan Z; Liu J; Shi J; Zhao Z; Wei Y; Zhang X; Jiang G; Duan A
    J Environ Sci (China); 2018 Mar; 65():1-7. PubMed ID: 29548380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous removal of NO and Hg
    Chi G; Shen B; Yu R; He C; Zhang X
    J Hazard Mater; 2017 May; 330():83-92. PubMed ID: 28212513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dispersion and reactivity of copper catalysts supported on Al2O3-ZrO2.
    Sagar GV; Rao PV; Srikanth CS; Chary KV
    J Phys Chem B; 2006 Jul; 110(28):13881-8. PubMed ID: 16836337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3.
    Shen B; Liu T; Zhao N; Yang X; Deng L
    J Environ Sci (China); 2010; 22(9):1447-54. PubMed ID: 21174978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elucidation of the Reaction Mechanism for High-Temperature Water Gas Shift over an Industrial-Type Copper-Chromium-Iron Oxide Catalyst.
    Polo-Garzon F; Fung V; Nguyen L; Tang Y; Tao F; Cheng Y; Daemen LL; Ramirez-Cuesta AJ; Foo GS; Zhu M; Wachs IE; Jiang DE; Wu Z
    J Am Chem Soc; 2019 May; 141(19):7990-7999. PubMed ID: 31021093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and reactivity of copper oxide catalysts supported on TiO2-ZrO2.
    Chary KV; Sagar GV; Naresh D; Seela KK; Sridhar B
    J Phys Chem B; 2005 May; 109(19):9437-44. PubMed ID: 16852132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide.
    Kim SC
    J Hazard Mater; 2002 Apr; 91(1-3):285-99. PubMed ID: 11900919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.