These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37823228)
1. Scaling perspectives of underscreening in concentrated electrolyte solutions. Safran SA; Pincus PA Soft Matter; 2023 Oct; 19(41):7907-7911. PubMed ID: 37823228 [TBL] [Abstract][Full Text] [Related]
2. Cluster Formation Induced by Local Dielectric Saturation in Restricted Primitive Model Electrolytes. Ribar D; Woodward CE; Nordholm S; Forsman J J Phys Chem Lett; 2024 Aug; 15(32):8326-8333. PubMed ID: 39109581 [TBL] [Abstract][Full Text] [Related]
3. Underscreening and hidden ion structures in large scale simulations of concentrated electrolytes. Krucker-Velasquez E; Swan JW J Chem Phys; 2021 Oct; 155(13):134903. PubMed ID: 34624965 [TBL] [Abstract][Full Text] [Related]
4. Absence of anomalous underscreening in highly concentrated aqueous electrolytes confined between smooth silica surfaces. Kumar S; Cats P; Alotaibi MB; Ayirala SC; Yousef AA; van Roij R; Siretanu I; Mugele F J Colloid Interface Sci; 2022 Sep; 622():819-827. PubMed ID: 35561602 [TBL] [Abstract][Full Text] [Related]
5. Underscreening in concentrated electrolytes. Lee AA; Perez-Martinez CS; Smith AM; Perkin S Faraday Discuss; 2017 Jul; 199():239-259. PubMed ID: 28466925 [TBL] [Abstract][Full Text] [Related]
6. Colloidal Systems in Concentrated Electrolyte Solutions Exhibit Re-entrant Long-Range Electrostatic Interactions due to Underscreening. Yuan H; Deng W; Zhu X; Liu G; Craig VSJ Langmuir; 2022 May; 38(19):6164-6173. PubMed ID: 35512818 [TBL] [Abstract][Full Text] [Related]
7. A screening of results on the decay length in concentrated electrolytes. Jäger H; Schlaich A; Yang J; Lian C; Kondrat S; Holm C Faraday Discuss; 2023 Oct; 246(0):520-539. PubMed ID: 37602784 [TBL] [Abstract][Full Text] [Related]
8. Underscreening in ionic liquids: a first principles analysis. Rotenberg B; Bernard O; Hansen JP J Phys Condens Matter; 2018 Feb; 30(5):054005. PubMed ID: 29271363 [TBL] [Abstract][Full Text] [Related]
10. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. Smith AM; Lee AA; Perkin S J Phys Chem Lett; 2016 Jun; 7(12):2157-63. PubMed ID: 27216986 [TBL] [Abstract][Full Text] [Related]
11. Bayesian unsupervised learning reveals hidden structure in concentrated electrolytes. Jones P; Coupette F; Härtel A; Lee AA J Chem Phys; 2021 Apr; 154(13):134902. PubMed ID: 33832269 [TBL] [Abstract][Full Text] [Related]
12. Correlation Length in Concentrated Electrolytes: Insights from All-Atom Molecular Dynamics Simulations. Coles SW; Park C; Nikam R; Kanduč M; Dzubiella J; Rotenberg B J Phys Chem B; 2020 Mar; 124(9):1778-1786. PubMed ID: 32031810 [TBL] [Abstract][Full Text] [Related]
13. Screening length for finite-size ions in concentrated electrolytes. Adar RM; Safran SA; Diamant H; Andelman D Phys Rev E; 2019 Oct; 100(4-1):042615. PubMed ID: 31771021 [TBL] [Abstract][Full Text] [Related]
14. Vibrational energy transfer: an angstrom molecular ruler in studies of ion pairing and clustering in aqueous solutions. Chen H; Bian H; Li J; Wen X; Zhang Q; Zhuang W; Zheng J J Phys Chem B; 2015 Mar; 119(12):4333-49. PubMed ID: 25679402 [TBL] [Abstract][Full Text] [Related]
15. Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters. Chen H; Ruckenstein E J Phys Chem B; 2015 Oct; 119(39):12671-6. PubMed ID: 26358093 [TBL] [Abstract][Full Text] [Related]
17. Dynamical Ion Association and Transport Properties in PEO-LiTFSI Electrolytes: Effect of Salt Concentration. Kang P; Wu L; Chen D; Su Y; Zhu Y; Lan J; Yang X; Sui G J Phys Chem B; 2022 Jun; 126(24):4531-4542. PubMed ID: 35695471 [TBL] [Abstract][Full Text] [Related]
18. Macroscopic conductivity of aqueous electrolyte solutions scales with ultrafast microscopic ion motions. Balos V; Imoto S; Netz RR; Bonn M; Bonthuis DJ; Nagata Y; Hunger J Nat Commun; 2020 Mar; 11(1):1611. PubMed ID: 32235854 [TBL] [Abstract][Full Text] [Related]
19. Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05-3 M Li⁺ and Cs⁺ electrolyte solutions. Baimpos T; Shrestha BR; Raman S; Valtiner M Langmuir; 2014 Apr; 30(15):4322-32. PubMed ID: 24655312 [TBL] [Abstract][Full Text] [Related]
20. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores. Buyukdagli S; Manghi M; Palmeri J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]