BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37823460)

  • 1. Improvement of electrolytes for aluminum ion batteries: A molecular dynamics study.
    Kosar M; Taimoory SM; Diesenhaus O; Trant JF
    J Chem Phys; 2023 Oct; 159(14):. PubMed ID: 37823460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rechargeable aluminum batteries: effects of cations in ionic liquid electrolytes.
    Zhu G; Angell M; Pan CJ; Lin MC; Chen H; Huang CJ; Lin J; Achazi AJ; Kaghazchi P; Hwang BJ; Dai H
    RSC Adv; 2019 Apr; 9(20):11322-11330. PubMed ID: 35520252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exfoliation Mechanism of Graphite Cathode in Ionic Liquids.
    Lei H; Tu J; Yu Z; Jiao S
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36702-36707. PubMed ID: 28972779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries.
    Sun XG; Fang Y; Jiang X; Yoshii K; Tsuda T; Dai S
    Chem Commun (Camb); 2016 Jan; 52(2):292-5. PubMed ID: 26511160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio Molecular Dynamics Investigations of the Speciation and Reactivity of Deep Eutectic Electrolytes in Aluminum Batteries.
    Carrasco-Busturia D; Lysgaard S; Jankowski P; Vegge T; Bhowmik A; García-Lastra JM
    ChemSusChem; 2021 May; 14(9):2034-2041. PubMed ID: 33682346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.
    Angell M; Pan CJ; Rong Y; Yuan C; Lin MC; Hwang BJ; Dai H
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):834-839. PubMed ID: 28096353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From molten salts to room temperature ionic liquids: simulation studies on chloroaluminate systems.
    Salanne M; Siqueira LJ; Seitsonen AP; Madden PA; Kirchner B
    Faraday Discuss; 2012; 154():171-88; discussion 189-220, 465-71. PubMed ID: 22455021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the solvation and dynamic behaviors of a lithium salt in organic- and ionic liquid-based electrolytes.
    Tong J; Xiao X; Liang X; von Solms N; Huo F; He H; Zhang S
    Phys Chem Chem Phys; 2019 Sep; 21(35):19216-19225. PubMed ID: 31441485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of salt concentration on properties of mixed carbonate-based electrolyte for Li-ion batteries: a molecular dynamics simulation study.
    Haghkhah H; Ghalami Choobar B; Amjad-Iranagh S
    J Mol Model; 2020 Aug; 26(8):220. PubMed ID: 32740770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental Screening of Electrode Materials for a Rechargeable Aluminum Battery with an AlCl₃/EMIMCl Electrolyte.
    Ellingsen LA; Holland A; Drillet JF; Peters W; Eckert M; Concepcion C; Ruiz O; Colin JF; Knipping E; Pan Q; Wills RGA; Majeau-Bettez G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode.
    Wang S; Jiao S; Wang J; Chen HS; Tian D; Lei H; Fang DN
    ACS Nano; 2017 Jan; 11(1):469-477. PubMed ID: 27977919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport Properties of Ionic Liquid and Sodium Salt Mixtures for Sodium-Ion Battery Electrolytes from Molecular Dynamics Simulation with a Self-Consistent Atomic Charge Determination.
    Hakim L; Ishii Y; Matsumoto K; Hagiwara R; Ohara K; Umebayashi Y; Matubayasi N
    J Phys Chem B; 2020 Aug; 124(33):7291-7305. PubMed ID: 32786718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.
    Sun XG; Bi Z; Liu H; Fang Y; Bridges CA; Paranthaman MP; Dai S; Brown GM
    Chem Commun (Camb); 2016 Jan; 52(8):1713-6. PubMed ID: 26666453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyacrylonitrile Separator for High-Performance Aluminum Batteries with Improved Interface Stability.
    Elia GA; Ducros JB; Sotta D; Delhorbe V; Brun A; Marquardt K; Hahn R
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38381-38389. PubMed ID: 29045125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery.
    Wang H; Gu S; Bai Y; Chen S; Wu F; Wu C
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27444-27448. PubMed ID: 27696799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial-Decomposition Analysis of Electrical Conductivity in Mixtures of Ionic Liquid and Sodium Salt for Sodium-Ion Battery Electrolytes.
    Hakim L; Ishii Y; Matubayasi N
    J Phys Chem B; 2021 Apr; 125(13):3374-3385. PubMed ID: 33759521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Performance of Graphitic Multi-walled Carbon Nanotubes with Different Aspect Ratios as Cathode Materials for Aluminum-ion Batteries.
    Hou L; Cao H; Han M; Lv Z; Zhou S; Chen H; Du H; Cai M; Zhou Y; Meng C; Bian Y; Lin MC
    ChemistryOpen; 2020 Aug; 9(8):812-817. PubMed ID: 32775143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery.
    Lee D; Lee G; Tak Y
    Nanotechnology; 2018 Sep; 29(36):36LT01. PubMed ID: 29916812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locally Concentrated Ionic Liquid Electrolytes for Wide-Temperature-Range Aluminum-Sulfur Batteries.
    Xu C; Diemant T; Mariani A; Di Pietro ME; Mele A; Liu X; Passerini S
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318204. PubMed ID: 38244210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.