These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37823530)

  • 21. Membrane fusion and drug delivery with carbon nanotube porins.
    Ho NT; Siggel M; Camacho KV; Bhaskara RM; Hicks JM; Yao YC; Zhang Y; Köfinger J; Hummer G; Noy A
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33941689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decoupling copolymer, lipid and carbon nanotube interactions in hybrid, biomimetic vesicles.
    Hammons JA; Ingólfsson HI; Lee JRI; Carpenter TS; Sanborn J; Tunuguntla R; Yao YC; Weiss TM; Noy A; Van Buuren T
    Nanoscale; 2020 Mar; 12(11):6545-6555. PubMed ID: 32159198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding carbon nanotube channel formation in the lipid membrane.
    Choi MK; Kim H; Lee BH; Kim T; Rho J; Kim MK; Kim K
    Nanotechnology; 2018 Mar; 29(11):115702. PubMed ID: 29332844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Silicon Nanoribbon pH Sensors Protected by a Barrier Membrane with Carbon Nanotube Porins.
    Chen X; Zhang H; Tunuguntla RH; Noy A
    Nano Lett; 2019 Feb; 19(2):629-634. PubMed ID: 30285454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes.
    Sheng J; Zhu Q; Zeng X; Yang Z; Zhang X
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11009-11015. PubMed ID: 28264153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Breakdown of the Nernst-Einstein relation in carbon nanotube porins.
    Li Z; Misra RP; Li Y; Yao YC; Zhao S; Zhang Y; Chen Y; Blankschtein D; Noy A
    Nat Nanotechnol; 2023 Feb; 18(2):177-183. PubMed ID: 36585518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins.
    Hicks JM; Yao YC; Barber S; Neate N; Watts JA; Noy A; Rawson FJ
    Small; 2021 Aug; 17(32):e2102517. PubMed ID: 34269516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes.
    Gueon D; Hwang JT; Yang SB; Cho E; Sohn K; Yang DK; Moon JH
    ACS Nano; 2018 Jan; 12(1):226-233. PubMed ID: 29300088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rosette Nanotube Porins as Ion Selective Transporters and Single-Molecule Sensors.
    Tripathi P; Shuai L; Joshi H; Yamazaki H; Fowle WH; Aksimentiev A; Fenniri H; Wanunu M
    J Am Chem Soc; 2020 Jan; 142(4):1680-1685. PubMed ID: 31913034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photopolymerized lipids self-assembly for the solubilization of carbon nanotubes.
    Contal E; Morère A; Thauvin C; Perino A; Meunier S; Mioskowski C; Wagner A
    J Phys Chem B; 2010 May; 114(17):5718-22. PubMed ID: 20380427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards mimicking natural protein channels with aligned carbon nanotube membranes for active drug delivery.
    Majumder M; Stinchcomb A; Hinds BJ
    Life Sci; 2010 Apr; 86(15-16):563-8. PubMed ID: 19383500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular transport enhancement in pure metallic carbon nanotube porins.
    Li Y; Li Z; Misra RP; Liang C; Gillen AJ; Zhao S; Abdullah J; Laurence T; Fagan JA; Aluru N; Blankschtein D; Noy A
    Nat Mater; 2024 Jun; ():. PubMed ID: 38937586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of the mechanical and thermal transport properties of carbon nanotube yarns by boundary structure modulation.
    Shikata R; Suzuki H; Hayashi Y; Hasegawa T; Shigeeda Y; Inoue H; Yajima W; Kametaka J; Maetani M; Tanaka Y; Nishikawa T; Maeda S; Hayashi Y; Hada M
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35196260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dispersing Carbon Nanotubes with Ionic Surfactants under Controlled Conditions: Comparisons and Insight.
    Fernandes RM; Abreu B; Claro B; Buzaglo M; Regev O; Furó I; Marques EF
    Langmuir; 2015 Oct; 31(40):10955-65. PubMed ID: 26390187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanofluidic Transport through Isolated Carbon Nanotube Channels: Advances, Controversies, and Challenges.
    Guo S; Meshot ER; Kuykendall T; Cabrini S; Fornasiero F
    Adv Mater; 2015 Oct; 27(38):5726-37. PubMed ID: 26037895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Precision Nanotube Mimics via Self-Assembly of Programmed Carbon Nanohoops.
    Van Raden JM; Leonhardt EJ; Zakharov LN; Pérez-Guardiola A; Pérez-Jiménez AJ; Marshall CR; Brozek CK; Sancho-García JC; Jasti R
    J Org Chem; 2020 Jan; 85(1):129-141. PubMed ID: 31623439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of Carbon Nanotube (CNT) Composite Membranes.
    Altalhi T; Ginic-Markovic M; Han N; Clarke S; Losic D
    Membranes (Basel); 2010 Dec; 1(1):37-47. PubMed ID: 24957494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast Water Transport through Subnanometer Diameter Vertically Aligned Carbon Nanotube Membranes.
    Yang DC; Castellano RJ; Silvy RP; Lageshetty SK; Praino RF; Fornasiero F; Shan JW
    Nano Lett; 2023 Jun; 23(11):4956-4964. PubMed ID: 37272837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control performance and biomembrane disturbance of carbon nanotube artificial water channels by nitrogen-doping.
    Yang Y; Li X; Jiang J; Du H; Zhao L; Zhao Y
    ACS Nano; 2010 Oct; 4(10):5755-62. PubMed ID: 20919730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.