BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37823692)

  • 1. The Mechanism and Fine-Tuning of Chiral Plexcitons in the Strong Coupling Regime.
    He C; Guo J; Jin L; Deng X; Li J; Liang X; Liang K; Yu L
    Nano Lett; 2023 Oct; 23(20):9428-9436. PubMed ID: 37823692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Mechanism of Manipulating Chirality and Chiral Sensing Based on Chiral Plexcitons in a Strong-Coupling Regime.
    Liang X; Liang K; Deng X; He C; Zhou P; Li J; Qin J; Jin L; Yu L
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plexcitonic Optical Chirality: Strong Exciton-Plasmon Coupling in Chiral J-Aggregate-Metal Nanoparticle Complexes.
    Wu F; Guo J; Huang Y; Liang K; Jin L; Li J; Deng X; Jiao R; Liu Y; Zhang J; Zhang W; Yu L
    ACS Nano; 2021 Feb; 15(2):2292-2300. PubMed ID: 33356158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plexcitonic optical chirality in the chiral plasmonic structure-microcavity-exciton strong coupling system.
    Deng X; Li J; Jin L; Wang Y; Liang K; Yu L
    Opt Express; 2023 Sep; 31(20):32082-32092. PubMed ID: 37859018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Plexcitonic Optical Chirality Using Discrete Structurally Chiral Plasmonic Nanoparticles.
    Cheng Q; Yang J; Sun L; Liu C; Yang G; Tao Y; Sun X; Zhang B; Xu H; Zhang Q
    Nano Lett; 2023 Dec; 23(23):11376-11384. PubMed ID: 38038244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse axial chiral assemblies of J-aggregates in plexcitonic nanoparticles.
    Guo J; Wu F; Song G; Huang Y; Jiao R; Yu L
    Nanoscale; 2021 Oct; 13(37):15812-15818. PubMed ID: 34528651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Light-Matter Interactions in Chiral Plasmonic-Excitonic Systems Assembled on DNA Origami.
    Zhu J; Wu F; Han Z; Shang Y; Liu F; Yu H; Yu L; Li N; Ding B
    Nano Lett; 2021 Apr; 21(8):3573-3580. PubMed ID: 33830773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular Dichroism in Off-Resonantly Coupled Plasmonic Nanosystems.
    Ferry VE; Hentschel M; Alivisatos AP
    Nano Lett; 2015 Dec; 15(12):8336-41. PubMed ID: 26569468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-Enabled Chiral Gold Nanoparticle-Chromophore Hybrid Structure with Resonant Plasmon-Exciton Coupling Gives Unusual and Strong Circular Dichroism.
    Lan X; Zhou X; McCarthy LA; Govorov AO; Liu Y; Link S
    J Am Chem Soc; 2019 Dec; 141(49):19336-19341. PubMed ID: 31724853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realization of exciton-polariton optical chirality based on strong coupling between intrinsic chiral quasibound states in the continuum and monolayer WS2.
    Deng X; Liang X; He C; Li J; Zhou P; Liang K; Yu L
    Opt Express; 2024 Mar; 32(7):11522-11533. PubMed ID: 38570997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Reversal of Circular Dichroism in the Seed-Mediated Growth of Bichiral Plasmonic Nanoparticles.
    Sun X; Yang J; Sun L; Yang G; Liu C; Tao Y; Cheng Q; Wang C; Xu H; Zhang Q
    ACS Nano; 2022 Nov; 16(11):19174-19186. PubMed ID: 36251931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress.
    Kong XT; Besteiro LV; Wang Z; Govorov AO
    Adv Mater; 2020 Oct; 32(41):e1801790. PubMed ID: 30260543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the Aggregation of Dyes on Ligand-Shell Protected Gold Nanoparticles to Promote Plexcitons Formation.
    Peruffo N; Parolin G; Collini E; Corni S; Mancin F
    Nanomaterials (Basel); 2022 Apr; 12(7):. PubMed ID: 35407298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal Chiral-Plasmon-Induced Upward and Downward Transfer of Circular Dichroism to Achiral Molecules.
    Chen PG; Gao H; Tang B; Jin W; Rogach AL; Lei D
    Nano Lett; 2024 Feb; 24(8):2488-2495. PubMed ID: 38198618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Lattice Resonances in 3D Chiral Metacrystals for Plasmonic Sensing.
    Manoccio M; Tasco V; Todisco F; Passaseo A; Cuscuna M; Tarantini I; Gigli G; Esposito M
    Adv Sci (Weinh); 2023 Feb; 10(6):e2206930. PubMed ID: 36575146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.
    Abdulrahman NA; Fan Z; Tonooka T; Kelly SM; Gadegaard N; Hendry E; Govorov AO; Kadodwala M
    Nano Lett; 2012 Feb; 12(2):977-83. PubMed ID: 22263754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergent chiroptical properties in supramolecular and plasmonic assemblies.
    Nizar NSS; Sujith M; Swathi K; Sissa C; Painelli A; Thomas KG
    Chem Soc Rev; 2021 Oct; 50(20):11208-11226. PubMed ID: 34522920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.
    Urban MJ; Shen C; Kong XT; Zhu C; Govorov AO; Wang Q; Hentschel M; Liu N
    Annu Rev Phys Chem; 2019 Jun; 70():275-299. PubMed ID: 31112458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switchable Plasmonic Chirality for Light Modulation: From Near-Field to Far-Field Coupling.
    Lin Y; Guo H; Che D; Wang J
    J Phys Chem Lett; 2023 Feb; 14(6):1403-1410. PubMed ID: 36730696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral nanocrystals: plasmonic spectra and circular dichroism.
    Fan Z; Govorov AO
    Nano Lett; 2012 Jun; 12(6):3283-9. PubMed ID: 22591323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.