These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37823716)

  • 21. Cobalt Oxide-Based Electrocatalysts with Bifunctionality for High-Performing Rechargeable Zinc-Air Batteries.
    Saha P; Shaheen Shah S; Ali M; Nasiruzzaman Shaikh M; Aziz MA; Saleh Ahammad AJ
    Chem Rec; 2024 Jan; 24(1):e202300216. PubMed ID: 37651034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wood-Derived Integral Air Electrode for Enhanced Interfacial Electrocatalysis in Rechargeable Zinc-Air Battery.
    Cui X; Liu Y; Han G; Cao M; Han L; Zhou B; Mehdi S; Wu X; Li B; Jiang J
    Small; 2021 Sep; 17(38):e2101607. PubMed ID: 34365727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Material design and surface chemistry for advanced rechargeable zinc-air batteries.
    Lee S; Choi J; Kim M; Park J; Park M; Cho J
    Chem Sci; 2022 Jun; 13(21):6159-6180. PubMed ID: 35733905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc-Air Battery with Neutral Aqueous Electrolyte.
    An L; Zhang Z; Feng J; Lv F; Li Y; Wang R; Lu M; Gupta RB; Xi P; Zhang S
    J Am Chem Soc; 2018 Dec; 140(50):17624-17631. PubMed ID: 30403846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silver decorated cobalt carbonate to enable high bifunctional activity for oxygen electrocatalysis and rechargeable Zn-air batteries.
    Gui L; Xu Y; Tang Q; Shi X; Zhang J; He B; Zhao L
    J Colloid Interface Sci; 2021 Dec; 603():252-258. PubMed ID: 34186403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and Facile Synthesis of Highly Efficient and Durable Bifunctional Oxygen Electrocatalyst Fe-N
    Li G; Yang J; Chen Y; Liu M; Guo X; Chen G; Chang B; Wu T; Wang X
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54032-54042. PubMed ID: 34739216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FeCo Nanoparticles Encapsulated in N-Doped Carbon Nanotubes Coupled with Layered Double (Co, Fe) Hydroxide as an Efficient Bifunctional Catalyst for Rechargeable Zinc-Air Batteries.
    Zhang T; Bian J; Zhu Y; Sun C
    Small; 2021 Nov; 17(44):e2103737. PubMed ID: 34553487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Hybrid Redox-Mediated Zinc-Air Fuel Cell for Scalable and Sustained Power Generation.
    Song Y; Xia L; Salla M; Xi S; Fu W; Wang W; Gao M; Huang S; Huang S; Wang X; Yu X; Niu T; Zhang Y; Wang S; Han M; Ni M; Wang Q; Zhang H
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202314796. PubMed ID: 38391058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Design Strategy and Active Site Regulation of High-Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn-Air Battery.
    Liu X; Zhang G; Wang L; Fu H
    Small; 2021 Dec; 17(48):e2006766. PubMed ID: 34085767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binder-Free Air Electrodes for Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives.
    Yan X; Ha Y; Wu R
    Small Methods; 2021 Apr; 5(4):e2000827. PubMed ID: 34927848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic Metal-Support Interaction Modulation of Single-Atom Electrocatalysts for Rechargeable Zinc-Air Batteries.
    Wu M; Zhang G; Wang W; Yang H; Rawach D; Chen M; Sun S
    Small Methods; 2022 Mar; 6(3):e2100947. PubMed ID: 35037425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Defect Engineering of Carbon-based Electrocatalysts for Rechargeable Zinc-air Batteries.
    Dong F; Wu M; Zhang G; Liu X; Rawach D; Tavares AC; Sun S
    Chem Asian J; 2020 Nov; 15(22):3737-3751. PubMed ID: 32997441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries.
    Zhu Y; Yue K; Xia C; Zaman S; Yang H; Wang X; Yan Y; Xia BY
    Nanomicro Lett; 2021 Jun; 13(1):137. PubMed ID: 34138394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-noble metal single-atoms for oxygen electrocatalysis in rechargeable zinc-air batteries: recent developments and future perspectives.
    Li L; Xu J; Zhu Q; Meng X; Xu H; Han M
    Dalton Trans; 2024 Jan; 53(5):1915-1934. PubMed ID: 38192245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Architecting N-doped Carbon Nanotube-Rich Carbon Nanofibers with Biomimetic Vine-Leaf-Whisker Structure as Robust Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries.
    Wang M; Chen Z; Song Y; Hu Z; Song H; Dong S; Yuan D
    Inorg Chem; 2024 Mar; 63(9):4373-4384. PubMed ID: 38376825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Boosting the activity and stability
    Deng X; Gu X; Deng Y; Jiang Z; Chen W; Dang D; Lin W; Chi B
    Nanoscale; 2022 Sep; 14(36):13192-13203. PubMed ID: 36047468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Ultrastable Rechargeable Zinc-Air Battery Using a Janus Superwetting Air Electrode.
    Zhang X; Wang X; Guan Z; Fang J; Sui R; Pei J; Qin Y; Wei D; Zhu W; Zhuang Z
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52849-52856. PubMed ID: 36394544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanostructure Engineering of Cathode Layers in Proton Exchange Membrane Fuel Cells: From Catalysts to Membrane Electrode Assembly.
    Yang B; Xiang Z
    ACS Nano; 2024 May; 18(18):11598-11630. PubMed ID: 38669279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anion Exchange Membranes for Fuel Cell Application: A Review.
    Das G; Choi JH; Nguyen PKT; Kim DJ; Yoon YS
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonmetallic Nitrogen-Doped MnO
    Zhang W; Xie S; Wang S; Zhao P; Yang X; Huang P; Liu P; Cheng F
    Chemistry; 2023 Apr; 29(19):e202203787. PubMed ID: 36585826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.