These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37823765)

  • 1. An ultra-low field SQUID magnetometer for measuring antiferromagnetic and weakly remanent magnetic materials at low temperatures.
    Paulsen M; Lindner J; Klemke B; Beyer J; Fechner M; Meier D; Kiefer K
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37823765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensation System for Biomagnetic Measurements with Optically Pumped Magnetometers inside a Magnetically Shielded Room.
    Jodko-Władzińska A; Wildner K; Pałko T; Władziński M
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature anvil cell for high-pressure measurements in a commercial superconducting quantum interference device magnetometer.
    Alireza PL; Lonzarich GG
    Rev Sci Instrum; 2009 Feb; 80(2):023906. PubMed ID: 19256661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors.
    Kurashima K; Kataoka M; Nakano T; Fujiwara K; Kato S; Nakamura T; Yuzawa M; Masuda M; Ichimura K; Okatake S; Moriyasu Y; Sugiyama K; Oogane M; Ando Y; Kumagai S; Matsuzaki H; Mochizuki H
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer.
    Fang J; Qin J
    Rev Sci Instrum; 2012 Oct; 83(10):103104. PubMed ID: 23126748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K.
    Nagendran R; Thirumurugan N; Chinnasamy N; Janawadkar MP; Sundar CS
    Rev Sci Instrum; 2011 Jan; 82(1):015109. PubMed ID: 21280860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vectorial calibration of superconducting magnets with a quantum magnetic sensor.
    Botsch L; Raatz N; Pezzagna S; Staacke R; John R; Abel B; Esquinazi PD; Meijer J; Diziain S
    Rev Sci Instrum; 2020 Dec; 91(12):125003. PubMed ID: 33379962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incommensurate Antiferromagnetic Order in Weakly Frustrated Two-Dimensional van der Waals Insulator CrPSe
    Baithi M; Dang NT; Tran TA; Fix JP; Luong DH; Dhakal KP; Yoon D; Rutkauskas AV; Kichanov SE; Zel IY; Kim J; Borys NJ; Kozlenko DP; Lee YH; Duong DL
    Inorg Chem; 2023 Aug; 62(32):12674-12682. PubMed ID: 37531606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superconducting quantum interference device setup for magnetoelectric measurements.
    Borisov P; Hochstrat A; Shvartsman VV; Kleemann W
    Rev Sci Instrum; 2007 Oct; 78(10):106105. PubMed ID: 17979461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous reading SQUID magnetometer and its applications.
    Janů Z; Soukup F
    Rev Sci Instrum; 2017 Jun; 88(6):065104. PubMed ID: 28668003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High temperature RF SQUIDs for biomedical applications.
    Zhang Y; Tavrin Y; Mück M; Braginski AI; Heiden C; Elbert T; Hampson S
    Physiol Meas; 1993 May; 14(2):113-9. PubMed ID: 8334406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-axis SQUID-based absolute vector magnetometer.
    Schönau T; Zakosarenko V; Schmelz M; Stolz R; Anders S; Linzen S; Meyer M; Meyer HG
    Rev Sci Instrum; 2015 Oct; 86(10):105002. PubMed ID: 26520976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers.
    Iivanainen J; Zetter R; Grön M; Hakkarainen K; Parkkonen L
    Neuroimage; 2019 Jul; 194():244-258. PubMed ID: 30885786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-low noise graphene/copper/nylon fabric for electromagnetic interference shielding in ultra-low field magnetic resonance imaging.
    Yu M; Tao Q; Dong H; Huang T; Li Y; Xiao Y; Yang S; Gao B; Ding G; Xie X
    J Magn Reson; 2020 Aug; 317():106775. PubMed ID: 32598279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of SQUIDs to low temperature and high magnetic field measurements-Ultra low noise torque magnetometry.
    Arnold F; Naumann M; Lühmann T; Mackenzie AP; Hassinger E
    Rev Sci Instrum; 2018 Feb; 89(2):023901. PubMed ID: 29495810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet.
    Vennemann T; Jeong M; Yoon D; Magrez A; Berger H; Yang L; Živković I; Babkevich P; Rønnow HM
    Rev Sci Instrum; 2018 Apr; 89(4):046101. PubMed ID: 29716319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A compact, high performance atomic magnetometer for biomedical applications.
    Shah VK; Wakai RT
    Phys Med Biol; 2013 Nov; 58(22):8153-61. PubMed ID: 24200837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Sensitive Tunable Magnetometer Based on Superconducting Quantum Interference Device.
    Vettoliere A; Granata C
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-Situ Measurement of Electrical-Heating-Induced Magnetic Field for an Atomic Magnetometer.
    Lu J; Wang J; Yang K; Zhao J; Quan W; Han B; Ding M
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32218349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing and Analysis Method of Low Remanence Materials for Magnetic Shielding Device.
    Cheng Y; Luo Y; Shen R; Kong D; Zhou W
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.