These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 37823963)

  • 1. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding.
    Hafeez A; Ali B; Javed MA; Saleem A; Fatima M; Fathi A; Afridi MS; Aydin V; Oral MA; Soudy FA
    Planta; 2023 Oct; 258(5):97. PubMed ID: 37823963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic resources in plant breeding for sustainable agriculture.
    Thudi M; Palakurthi R; Schnable JC; Chitikineni A; Dreisigacker S; Mace E; Srivastava RK; Satyavathi CT; Odeny D; Tiwari VK; Lam HM; Hong YB; Singh VK; Li G; Xu Y; Chen X; Kaila S; Nguyen H; Sivasankar S; Jackson SA; Close TJ; Shubo W; Varshney RK
    J Plant Physiol; 2021 Feb; 257():153351. PubMed ID: 33412425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources.
    Chandra T; Jaiswal S; Tomar RS; Iquebal MA; Kumar D
    Planta; 2024 Sep; 260(4):103. PubMed ID: 39304579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing future heat-resilient vegetable crops.
    Saeed F; Chaudhry UK; Raza A; Charagh S; Bakhsh A; Bohra A; Ali S; Chitikineni A; Saeed Y; Visser RGF; Siddique KHM; Varshney RK
    Funct Integr Genomics; 2023 Jan; 23(1):47. PubMed ID: 36692535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops.
    Rogo U; Simoni S; Fambrini M; Giordani T; Pugliesi C; Mascagni F
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nexus on climate change: agriculture and possible solution to cope future climate change stresses.
    Shahzad A; Ullah S; Dar AA; Sardar MF; Mehmood T; Tufail MA; Shakoor A; Haris M
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14211-14232. PubMed ID: 33515149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic interventions for sustainable agriculture.
    Bohra A; Chand Jha U; Godwin ID; Kumar Varshney R
    Plant Biotechnol J; 2020 Dec; 18(12):2388-2405. PubMed ID: 32875704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches.
    Haq SAU; Bashir T; Roberts TH; Husaini AM
    Mol Biol Rep; 2023 Dec; 51(1):41. PubMed ID: 38158512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies.
    Razzaq A; Wani SH; Saleem F; Yu M; Zhou M; Shabala S
    J Exp Bot; 2021 Sep; 72(18):6123-6139. PubMed ID: 34114599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing the potential of mutation breeding, CRISPR genome editing, and beyond for sustainable agriculture.
    Nor A'azizam NM; Chopra S; Guleria P; Kumar V; Abd Rahim MH; Yaacob JS
    Funct Integr Genomics; 2024 Feb; 24(2):44. PubMed ID: 38421529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems-based rice improvement approaches for sustainable food and nutritional security.
    Verma V; Vishal B; Kohli A; Kumar PP
    Plant Cell Rep; 2021 Nov; 40(11):2021-2036. PubMed ID: 34591154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creating future crops: a revolution for sustainable agriculture.
    Guo T; Lin HX
    J Genet Genomics; 2021 Feb; 48(2):97-101. PubMed ID: 33766493
    [No Abstract]   [Full Text] [Related]  

  • 18. Features and applications of haplotypes in crop breeding.
    Bhat JA; Yu D; Bohra A; Ganie SA; Varshney RK
    Commun Biol; 2021 Nov; 4(1):1266. PubMed ID: 34737387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technologies to deliver food and climate security through agriculture.
    Horton P; Long SP; Smith P; Banwart SA; Beerling DJ
    Nat Plants; 2021 Mar; 7(3):250-255. PubMed ID: 33731918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.