These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37824110)

  • 21. Two-dimensional peripheral refraction and retinal image quality in orthokeratology lens wearers.
    Lin Z; Duarte-Toledo R; Manzanera S; Lan W; Artal P; Yang Z
    Biomed Opt Express; 2020 Jul; 11(7):3523-3533. PubMed ID: 33014548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predictive Role of Paracentral Corneal Toricity Using Elevation Data for Treatment Zone Decentration During Orthokeratology.
    Li Z; Cui D; Long W; Hu Y; He L; Yang X
    Curr Eye Res; 2018 Sep; 43(9):1083-1089. PubMed ID: 29806506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the Distribution of Lenticule Decentration Following SMILE by Subjective Patient Fixation or Triple Marking Centration.
    Kang DSY; Lee H; Reinstein DZ; Roberts CJ; Arba-Mosquera S; Archer TJ; Kim EK; Seo KY; Kim TI
    J Refract Surg; 2018 Jul; 34(7):446-452. PubMed ID: 30001447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of visual performance between peripheral gradient high-addition multifocal soft contact lenses and orthokeratology.
    Chen Y; Ding C; Li X; Huang Y; Zhou F; Drobe B; Chen H; Bao J
    Ophthalmic Physiol Opt; 2023 Jul; 43(4):874-884. PubMed ID: 37040082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictive factors associated with axial length growth and myopia progression in orthokeratology.
    Kim J; Lim DH; Han SH; Chung TY
    PLoS One; 2019; 14(6):e0218140. PubMed ID: 31188890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manipulation of Front-Surface Profile of Scleral Contact Lenses to Alter Peripheral Refraction.
    Peguda R; Kang P; Swarbrick HA
    Optom Vis Sci; 2020 Sep; 97(9):797-806. PubMed ID: 32941337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corneal reshaping and wavefront aberrations during overnight orthokeratology.
    Lian Y; Shen M; Huang S; Yuan Y; Wang Y; Zhu D; Jiang J; Mao X; Wang J; Lu F
    Eye Contact Lens; 2014 May; 40(3):161-8. PubMed ID: 24681612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Treatment Zone Decentration During Orthokeratology on Eyes with Corneal Toricity.
    Maseedupally VK; Gifford P; Lum E; Naidu R; Sidawi D; Wang B; Swarbrick HA
    Optom Vis Sci; 2016 Sep; 93(9):1101-11. PubMed ID: 27254811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of eye rotation and contact lens decentration on horizontal peripheral refraction.
    Jaisankar D; Leube A; Gifford KL; Schmid KL; Atchison DA
    Ophthalmic Physiol Opt; 2019 Sep; 39(5):370-377. PubMed ID: 31482609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment zone decentration promotes retinal reshaping in Chinese myopic children wearing orthokeratology lenses.
    Li X; Huang Y; Zhang J; Ding C; Chen Y; Chen H; Bao J
    Ophthalmic Physiol Opt; 2022 Sep; 42(5):1124-1132. PubMed ID: 35598145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predictive role of corneal Q-value differences between nasal-temporal and superior-inferior quadrants in orthokeratology lens decentration.
    Li J; Yang C; Xie W; Zhang G; Li X; Wang S; Yang X; Zeng J
    Medicine (Baltimore); 2017 Jan; 96(2):e5837. PubMed ID: 28079814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Corneal higher-order aberrations induced by overnight orthokeratology.
    Hiraoka T; Matsumoto Y; Okamoto F; Yamaguchi T; Hirohara Y; Mihashi T; Oshika T
    Am J Ophthalmol; 2005 Mar; 139(3):429-36. PubMed ID: 15767050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Topographical evaluation on decentration of orthokeratology lenses].
    Yang X; Gong XM; Dai ZY; Wei L; Li SX
    Zhonghua Yan Ke Za Zhi; 2003 Jun; 39(6):335-8. PubMed ID: 12895361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accommodation response and spherical aberration during orthokeratology.
    Batres L; Peruzzo S; Serramito M; Carracedo G
    Graefes Arch Clin Exp Ophthalmol; 2020 Jan; 258(1):117-127. PubMed ID: 31720836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Higher-order wavefront aberrations in corneal refractive therapy.
    Joslin CE; Wu SM; McMahon TT; Shahidi M
    Optom Vis Sci; 2003 Dec; 80(12):805-11. PubMed ID: 14688543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of orthokeratology treatment zone decentration on myopia progression.
    Sun L; Li ZX; Chen Y; He ZQ; Song HX
    BMC Ophthalmol; 2022 Feb; 22(1):76. PubMed ID: 35164702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of spherical intraocular lens implantation and conventional laser in situ keratomileusis on peripheral ocular aberrations.
    Mathur A; Atchison DA
    J Cataract Refract Surg; 2010 Jul; 36(7):1127-34. PubMed ID: 20610090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New Perspective on Myopia Control with Orthokeratology.
    Kang P; Swarbrick H
    Optom Vis Sci; 2016 May; 93(5):497-503. PubMed ID: 26889820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Quantitative assessment of quality of vision].
    Oshika T
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):770-807; discussion 808. PubMed ID: 15656087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Topographical evaluation of the decentration of orthokeratology lenses.
    Yang X; Zhong X; Gong X; Zeng J
    Yan Ke Xue Bao; 2005 Sep; 21(3):132-5, 195. PubMed ID: 17162848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.