These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37824331)

  • 1. Transformer-Based Network for Accurate Classification of Lung Auscultation Sounds.
    Sonali CS; Kiran J; Chinmayi BS; Suma KV; Easa M
    Crit Rev Biomed Eng; 2023; 51(6):1-16. PubMed ID: 37824331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning.
    Kim Y; Hyon Y; Jung SS; Lee S; Yoo G; Chung C; Ha T
    Sci Rep; 2021 Aug; 11(1):17186. PubMed ID: 34433880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Low-Cost AI-Empowered Stethoscope and a Lightweight Model for Detecting Cardiac and Respiratory Diseases from Lung and Heart Auscultation Sounds.
    Zhang M; Li M; Guo L; Liu J
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Lung Sound Classification Using a Hybrid CNN-LSTM Network and Focal Loss Function.
    Petmezas G; Cheimariotis GA; Stefanopoulos L; Rocha B; Paiva RP; Katsaggelos AK; Maglaveras N
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of lung sounds using scalogram representation of sound segments and convolutional neural network.
    Pham Thi Viet H; Nguyen Thi Ngoc H; Tran Anh V; Hoang Quang H
    J Med Eng Technol; 2022 May; 46(4):270-279. PubMed ID: 35212591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computerized Lung Sound Screening for Pediatric Auscultation in Noisy Field Environments.
    Emmanouilidou D; McCollum ED; Park DE; Elhilali M
    IEEE Trans Biomed Eng; 2018 Jul; 65(7):1564-1574. PubMed ID: 28641244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data augmentation using Variational Autoencoders for improvement of respiratory disease classification.
    Saldanha J; Chakraborty S; Patil S; Kotecha K; Kumar S; Nayyar A
    PLoS One; 2022; 17(8):e0266467. PubMed ID: 35960763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The coming era of a new auscultation system for analyzing respiratory sounds.
    Kim Y; Hyon Y; Lee S; Woo SD; Ha T; Chung C
    BMC Pulm Med; 2022 Mar; 22(1):119. PubMed ID: 35361176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RespireNet: A Deep Neural Network for Accurately Detecting Abnormal Lung Sounds in Limited Data Setting.
    Gairola S; Tom F; Kwatra N; Jain M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():527-530. PubMed ID: 34891348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of AR-based algorithms for respiratory sounds classification.
    Sankur B; Kahya YP; Güler EC; Engin T
    Comput Biol Med; 1994 Jan; 24(1):67-76. PubMed ID: 8205793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning diagnostic and severity-stratification for interstitial lung diseases and chronic obstructive pulmonary disease in digital lung auscultations and ultrasonography: clinical protocol for an observational case-control study.
    Siebert JN; Hartley MA; Courvoisier DS; Salamin M; Robotham L; Doenz J; Barazzone-Argiroffo C; Gervaix A; Bridevaux PO
    BMC Pulm Med; 2023 Jun; 23(1):191. PubMed ID: 37264374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis.
    Gurung A; Scrafford CG; Tielsch JM; Levine OS; Checkley W
    Respir Med; 2011 Sep; 105(9):1396-403. PubMed ID: 21676606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical implementation of artificial intelligence algorithms in pulmonary auscultation examination.
    Grzywalski T; Piecuch M; Szajek M; Bręborowicz A; Hafke-Dys H; Kociński J; Pastusiak A; Belluzzo R
    Eur J Pediatr; 2019 Jun; 178(6):883-890. PubMed ID: 30927097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Respiratory Conditions using Auscultation Sound.
    Do QT; Lipatov K; Wang HY; Pickering BW; Herasevich V
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1942-1945. PubMed ID: 34891667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of patients considering observation frequency of continuous and discontinuous adventitious sounds in lung sounds.
    Nakamura N; Yamashita M; Matsunaga S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3457-3460. PubMed ID: 28269044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of clinical variability on computer-aided lung auscultation classification.
    Kala A; McCollum ED; Elhilali M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4421-4425. PubMed ID: 36086501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition and Classification of Lung Sounds for Improving the Efficacy of Auscultation Diagnosis of Pulmonary Diseases.
    Abera Tessema B; Nemomssa HD; Lamesgin Simegn G
    Med Devices (Auckl); 2022; 15():89-102. PubMed ID: 35418786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lightweight CNN Model for Detecting Respiratory Diseases From Lung Auscultation Sounds Using EMD-CWT-Based Hybrid Scalogram.
    Shuvo SB; Ali SN; Swapnil SI; Hasan T; Bhuiyan MIH
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2595-2603. PubMed ID: 33373309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crackle and wheeze detection in lung sound signals using convolutional neural networks.
    Faustino P; Oliveira J; Coimbra M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():345-348. PubMed ID: 34891306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heart Sound Classification Network Based on Convolution and Transformer.
    Cheng J; Sun K
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.