BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37824531)

  • 1. Polyubiquitin ligand-induced phase transitions are optimized by spacing between ubiquitin units.
    Galagedera SKK; Dao TP; Enos SE; Chaudhuri A; Schmit JD; Castañeda CA
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2306638120. PubMed ID: 37824531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding optimal ligand design for multicomponent condensates.
    Galagedera SKK; Dao TP; Enos SE; Chaudhuri A; Schmit JD; Castañeda CA
    bioRxiv; 2023 Apr; ():. PubMed ID: 36993708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights into enhancement or inhibition of phase separation by different polyubiquitin chains.
    Dao TP; Yang Y; Presti MF; Cosgrove MS; Hopkins JB; Ma W; Loh SN; Castañeda CA
    EMBO Rep; 2022 Aug; 23(8):e55056. PubMed ID: 35762418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The
    Hou XN; Tang C
    Acta Biochim Biophys Sin (Shanghai); 2023 Jun; 55(7):1084-1098. PubMed ID: 37294105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase separation of polyubiquitinated proteins in UBQLN2 condensates controls substrate fate.
    Valentino IM; Llivicota-Guaman JG; Dao TP; Mulvey EO; Lehman AM; Galagedera SKK; Mallon EL; Castañeda CA; Kraut DA
    bioRxiv; 2024 Jun; ():. PubMed ID: 38559018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquitin-Modulated Phase Separation of Shuttle Proteins: Does Condensate Formation Promote Protein Degradation?
    Dao TP; Castañeda CA
    Bioessays; 2020 Nov; 42(11):e2000036. PubMed ID: 32881044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand effects on phase separation of multivalent macromolecules.
    Ruff KM; Dar F; Pappu RV
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33653957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyphasic linkage and the impact of ligand binding on the regulation of biomolecular condensates.
    Ruff KM; Dar F; Pappu RV
    Biophys Rev (Melville); 2021 Jun; 2(2):021302. PubMed ID: 34179888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the biochemical role of Lys-11 in polyubiquitin chain formation using quantitative mass spectrometry.
    Jung JW; Bae SJ; Kang GY; Kim KH; Yeo WS; Park SH; Seol JH; Yi EC; Kim KP
    Rapid Commun Mass Spectrom; 2013 Jan; 27(2):339-46. PubMed ID: 23239382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ALS-linked mutations impair UBQLN2 stress-induced biomolecular condensate assembly in cells.
    Riley JF; Fioramonti PJ; Rusnock AK; Hehnly H; Castañeda CA
    J Neurochem; 2021 Oct; 159(1):145-155. PubMed ID: 34129687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single MIU motif of MINDY-1 recognizes K48-linked polyubiquitin chains.
    Kristariyanto YA; Abdul Rehman SA; Weidlich S; Knebel A; Kulathu Y
    EMBO Rep; 2017 Mar; 18(3):392-402. PubMed ID: 28082312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit.
    Chojnacki M; Mansour W; Hameed DS; Singh RK; El Oualid F; Rosenzweig R; Nakasone MA; Yu Z; Glaser F; Kay LE; Fushman D; Ovaa H; Glickman MH
    Cell Chem Biol; 2017 Apr; 24(4):443-457.e6. PubMed ID: 28330605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The missing links to link ubiquitin: Methods for the enzymatic production of polyubiquitin chains.
    Faggiano S; Alfano C; Pastore A
    Anal Biochem; 2016 Jan; 492():82-90. PubMed ID: 26470940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic Assembly of Ubiquitin Chains.
    Michel MA; Komander D; Elliott PR
    Methods Mol Biol; 2018; 1844():73-84. PubMed ID: 30242704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid phase separation of NEMO induced by polyubiquitin chains activates NF-κB.
    Du M; Ea CK; Fang Y; Chen ZJ
    Mol Cell; 2022 Jul; 82(13):2415-2426.e5. PubMed ID: 35477005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the linkage dependence of polyubiquitin conformations using molecular modeling.
    Fushman D; Walker O
    J Mol Biol; 2010 Jan; 395(4):803-14. PubMed ID: 19853612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions.
    Dao TP; Kolaitis RM; Kim HJ; O'Donovan K; Martyniak B; Colicino E; Hehnly H; Taylor JP; Castañeda CA
    Mol Cell; 2018 Mar; 69(6):965-978.e6. PubMed ID: 29526694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into ubiquitin chain architecture using Ub-clipping.
    Swatek KN; Usher JL; Kueck AF; Gladkova C; Mevissen TET; Pruneda JN; Skern T; Komander D
    Nature; 2019 Aug; 572(7770):533-537. PubMed ID: 31413367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteasome-independent functions of lysine-63 polyubiquitination in plants.
    Romero-Barrios N; Vert G
    New Phytol; 2018 Feb; 217(3):995-1011. PubMed ID: 29194634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling.
    Wan M; Wang X; Huang C; Xu D; Wang Z; Zhou Y; Zhu Y
    Nat Microbiol; 2019 Aug; 4(8):1282-1293. PubMed ID: 31110362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.