BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37824738)

  • 1. Accurately identifying nucleic-acid-binding sites through geometric graph learning on language model predicted structures.
    Song Y; Yuan Q; Zhao H; Yang Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37824738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying B-cell epitopes using AlphaFold2 predicted structures and pretrained language model.
    Zeng Y; Wei Z; Yuan Q; Chen S; Yu W; Lu Y; Gao J; Yang Y
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37039829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AlphaFold2-aware protein-DNA binding site prediction using graph transformer.
    Yuan Q; Chen S; Rao J; Zheng S; Zhao H; Yang Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepProSite: structure-aware protein binding site prediction using ESMFold and pretrained language model.
    Fang Y; Jiang Y; Wei L; Ma Q; Ren Z; Yuan Q; Wei DQ
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38015872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EquiPNAS: improved protein-nucleic acid binding site prediction using protein-language-model-informed equivariant deep graph neural networks.
    Roche R; Moussad B; Shuvo MH; Tarafder S; Bhattacharya D
    Nucleic Acids Res; 2024 Mar; 52(5):e27. PubMed ID: 38281252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EquiPNAS: improved protein-nucleic acid binding site prediction using protein-language-model-informed equivariant deep graph neural networks.
    Roche R; Moussad B; Shuvo MH; Tarafder S; Bhattacharya D
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function.
    Boadu F; Cao H; Cheng J
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i318-i325. PubMed ID: 37387145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GraphBind: protein structural context embedded rules learned by hierarchical graph neural networks for recognizing nucleic-acid-binding residues.
    Xia Y; Xia CQ; Pan X; Shen HB
    Nucleic Acids Res; 2021 May; 49(9):e51. PubMed ID: 33577689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SOFB is a comprehensive ensemble deep learning approach for elucidating and characterizing protein-nucleic-acid-binding residues.
    Zhang B; Hou Z; Yang Y; Wong KC; Zhu H; Li X
    Commun Biol; 2024 Jun; 7(1):679. PubMed ID: 38830995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Struct2GO: protein function prediction based on graph pooling algorithm and AlphaFold2 structure information.
    Jiao P; Wang B; Wang X; Liu B; Wang Y; Li J
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37847755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical graph transformer with contrastive learning for protein function prediction.
    Gu Z; Luo X; Chen J; Deng M; Lai L
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37369035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-equivariant graph neural networks for protein model quality assessment.
    Chen C; Chen X; Morehead A; Wu T; Cheng J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36637199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-aware protein-protein interaction site prediction using deep graph convolutional network.
    Yuan Q; Chen J; Zhao H; Zhou Y; Yang Y
    Bioinformatics; 2021 Dec; 38(1):125-132. PubMed ID: 34498061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function.
    Boadu F; Cao H; Cheng J
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LigBind: Identifying Binding Residues for Over 1000 Ligands with Relation-Aware Graph Neural Networks.
    Xia Y; Pan X; Shen HB
    J Mol Biol; 2023 Jul; 435(13):168091. PubMed ID: 37054909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence.
    Qiu J; Bernhofer M; Heinzinger M; Kemper S; Norambuena T; Melo F; Rost B
    J Mol Biol; 2020 Mar; 432(7):2428-2443. PubMed ID: 32142788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SGPPI: structure-aware prediction of protein-protein interactions in rigorous conditions with graph convolutional network.
    Huang Y; Wuchty S; Zhou Y; Zhang Z
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36682013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning.
    Zhang F; Zhao B; Shi W; Li M; Kurgan L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.