These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 378255)

  • 1. Three dimensional microscopic surface profiles of membranes reconstructed from freeze etching electrol micrographs.
    Krbecek R; Gebhardt C; Gruler H; Sackmann E
    Biochim Biophys Acta; 1979 Jun; 554(1):1-22. PubMed ID: 378255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative picture analysis of freeze-fracture electron-micrographs.
    Gruler H
    Acta Histochem Suppl; 1981; 23():55-74. PubMed ID: 6784180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of polylysine to charged bilayer membranes: molecular organization of a lipid.peptide complex.
    Hartmann W; Galla HJ
    Biochim Biophys Acta; 1978 Jun; 509(3):474-90. PubMed ID: 207323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The occurrence of phase separation structures in biological membranes as derived from freeze-etch observations.
    Meyer HW
    Acta Histochem Suppl; 1981; 23():189-94. PubMed ID: 6784164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically induced lipid phase separation in model membranes containing charged lipids: a spin label study.
    Galla HJ; Sackmann E
    Biochim Biophys Acta; 1975 Sep; 401(3):509-29. PubMed ID: 241398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymyxin binding to charged lipid membranes. An example of cooperative lipid-protein interaction.
    Hartmann W; Galla HJ; Sackmann E
    Biochim Biophys Acta; 1978 Jun; 510(1):124-39. PubMed ID: 208605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-induced pretransition in phosphatidylethanolamine multilayers. The occurrence of ripple structures.
    Stümpel J; Harlos K; Eibl H
    Biochim Biophys Acta; 1980 Jul; 599(2):464-72. PubMed ID: 7407102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-controlled structure and kinetics of ripple phases in one- and two-component supported lipid bilayers.
    Kaasgaard T; Leidy C; Crowe JH; Mouritsen OG; Jørgensen K
    Biophys J; 2003 Jul; 85(1):350-60. PubMed ID: 12829489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional shadowing in freeze-etching.
    Willison JH; Moir RD
    J Microsc; 1983 Nov; 132(Pt 2):171-8. PubMed ID: 6358512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intermediate monoclinic phase of phosphatidylcholines.
    Luna EJ; McConnell HM
    Biochim Biophys Acta; 1977 May; 466(3):381-92. PubMed ID: 192294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of proteins and cholesterol with lipids in bilayer membranes.
    Kleemann W; McConnell HM
    Biochim Biophys Acta; 1976 Jan; 419(2):206-22. PubMed ID: 174727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic reaction centers in artificial membranes: estimating protein dimensions by freeze-fracture and freeze-etching.
    Miller KR; Jacob JS
    J Submicrosc Cytol; 1984 Oct; 16(4):619-23. PubMed ID: 6389898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems.
    Lindsey H; Petersen NO; Chan SI
    Biochim Biophys Acta; 1979 Jul; 555(1):147-67. PubMed ID: 476096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of proteins on thermotropic phase transitions of phospholipid membranes.
    Papahadjopoulos D; Moscarello M; Eylar EH; Isac T
    Biochim Biophys Acta; 1975 Sep; 401(3):317-35. PubMed ID: 52374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid phase transitions in model biomembranes. The effect of ions on phosphatidylcholine bilayers.
    Chapman D; Peel WE; Kingston B; Lilley TH
    Biochim Biophys Acta; 1977 Jan; 464(2):260-75. PubMed ID: 831797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transitions of phospholipid bilayers and membranes of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopy.
    Verkleij AJ; Ververgaert PH; van Deenen LL; Elbers PF
    Biochim Biophys Acta; 1972 Nov; 288(2):326-32. PubMed ID: 5082995
    [No Abstract]   [Full Text] [Related]  

  • 17. The planar distributions of surface proteins and intramembrane particles in Acholeplasma laidlawii are differentially affected by the physical state of membrane lipids.
    Wallace BA; Engelman DM
    Biochim Biophys Acta; 1978 Apr; 508(3):431-49. PubMed ID: 638151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filipin as a cholesterol probe. II. Filipin-cholesterol interaction in red blood cell membranes.
    Behnke O; Tranum-Jensen J; van Deurs B
    Eur J Cell Biol; 1984 Nov; 35(2):200-15. PubMed ID: 6519067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method of estimating radial distribution function of protein particles in membranes from freeze-fracture electron micrographs.
    Duniec JT; Goodchild DJ; Thorne SW
    Comput Biol Med; 1982; 12(4):319-22. PubMed ID: 6897529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein with phospholipid bilayers. I. Formation of freeze-etch intramembranous particles.
    Segrest JP; Gulik-Krzywicki T; Sardet C
    Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3294-8. PubMed ID: 4528433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.