BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37826946)

  • 1. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps.
    Endo T
    Biochem Biophys Res Commun; 2023 Nov; 682():223-243. PubMed ID: 37826946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis.
    Motohashi N; Alexander MS; Shimizu-Motohashi Y; Myers JA; Kawahara G; Kunkel LM
    J Cell Sci; 2013 Jun; 126(Pt 12):2678-91. PubMed ID: 23606743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Akt2, a novel functional link between p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in myogenesis.
    Gonzalez I; Tripathi G; Carter EJ; Cobb LJ; Salih DA; Lovett FA; Holding C; Pell JM
    Mol Cell Biol; 2004 May; 24(9):3607-22. PubMed ID: 15082758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation.
    Contreras O; Villarreal M; Brandan E
    Skelet Muscle; 2018 Feb; 8(1):5. PubMed ID: 29463296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permissive roles of phosphatidyl inositol 3-kinase and Akt in skeletal myocyte maturation.
    Wilson EM; Tureckova J; Rotwein P
    Mol Biol Cell; 2004 Feb; 15(2):497-505. PubMed ID: 14595115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of a novel gene, dapr, involved in skeletal muscle differentiation and protein kinase B signaling.
    Virtanen C; Paris J; Takahashi M
    J Biol Chem; 2009 Jan; 284(3):1636-43. PubMed ID: 19028694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: Involvement of MAPK/ERK and PI3K/Akt pathways.
    Elia D; Madhala D; Ardon E; Reshef R; Halevy O
    Biochim Biophys Acta; 2007 Sep; 1773(9):1438-46. PubMed ID: 17688959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MEF2 activation in differentiated primary human skeletal muscle cultures requires coordinated involvement of parallel pathways.
    Al-Khalili L; Chibalin AV; Yu M; Sjödin B; Nylén C; Zierath JR; Krook A
    Am J Physiol Cell Physiol; 2004 Jun; 286(6):C1410-6. PubMed ID: 14960415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration.
    Zanou N; Schakman O; Louis P; Ruegg UT; Dietrich A; Birnbaumer L; Gailly P
    J Biol Chem; 2012 Apr; 287(18):14524-34. PubMed ID: 22399301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raptor and Rheb negatively regulate skeletal myogenesis through suppression of insulin receptor substrate 1 (IRS1).
    Ge Y; Yoon MS; Chen J
    J Biol Chem; 2011 Oct; 286(41):35675-35682. PubMed ID: 21852229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estrogen-related receptor α regulates skeletal myocyte differentiation via modulation of the ERK MAP kinase pathway.
    Murray J; Huss JM
    Am J Physiol Cell Physiol; 2011 Sep; 301(3):C630-45. PubMed ID: 21562305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flt3L is a novel regulator of skeletal myogenesis.
    Ge Y; Waldemer RJ; Nalluri R; Nuzzi PD; Chen J
    J Cell Sci; 2013 Aug; 126(Pt 15):3370-9. PubMed ID: 23704355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways.
    Kornasio R; Riederer I; Butler-Browne G; Mouly V; Uni Z; Halevy O
    Biochim Biophys Acta; 2009 May; 1793(5):755-63. PubMed ID: 19211028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-432 targeting E2F3 and P55PIK inhibits myogenesis through PI3K/AKT/mTOR signaling pathway.
    Ma M; Wang X; Chen X; Cai R; Chen F; Dong W; Yang G; Pang W
    RNA Biol; 2017 Mar; 14(3):347-360. PubMed ID: 28085550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Interactions of proliferation and differentiation signaling pathways in myogenesis].
    Milewska M; Grabiec K; Grzelkowska-Kowalczyk K
    Postepy Hig Med Dosw (Online); 2014 May; 68():516-26. PubMed ID: 24864103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells.
    Santos-Zas I; Gurriarán-Rodríguez U; Cid-Díaz T; Figueroa G; González-Sánchez J; Bouzo-Lorenzo M; Mosteiro CS; Señarís J; Casanueva FF; Casabiell X; Gallego R; Pazos Y; Mouly V; Camiña JP
    Cell Mol Life Sci; 2016 Feb; 73(3):617-35. PubMed ID: 26211463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective control of skeletal muscle differentiation by Akt1.
    Wilson EM; Rotwein P
    J Biol Chem; 2007 Feb; 282(8):5106-10. PubMed ID: 17218321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embryonic myogenesis pathways in muscle regeneration.
    Zhao P; Hoffman EP
    Dev Dyn; 2004 Feb; 229(2):380-92. PubMed ID: 14745964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PKR is a novel functional direct player that coordinates skeletal muscle differentiation via p38MAPK/AKT pathways.
    Alisi A; Spaziani A; Anticoli S; Ghidinelli M; Balsano C
    Cell Signal; 2008 Mar; 20(3):534-42. PubMed ID: 18164587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.