These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 37827088)
1. Machine learning based ischemia-specific stenosis prediction: A Chinese multicenter coronary CT angiography study. Zhang XL; Zhang B; Tang CX; Wang YN; Zhang JY; Yu MM; Hou Y; Zheng MW; Zhang DM; Hu XH; Xu L; Liu H; Sun ZY; Zhang LJ Eur J Radiol; 2023 Nov; 168():111133. PubMed ID: 37827088 [TBL] [Abstract][Full Text] [Related]
2. Coronary CT angiography-derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia. von Knebel Doeberitz PL; De Cecco CN; Schoepf UJ; Duguay TM; Albrecht MH; van Assen M; Bauer MJ; Savage RH; Pannell JT; De Santis D; Johnson AA; Varga-Szemes A; Bayer RR; Schönberg SO; Nance JW; Tesche C Eur Radiol; 2019 May; 29(5):2378-2387. PubMed ID: 30523456 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning From Quantitative Coronary Computed Tomography Angiography Predicts Fractional Flow Reserve-Defined Ischemia and Impaired Myocardial Blood Flow. Lin A; van Diemen PA; Motwani M; McElhinney P; Otaki Y; Han D; Kwan A; Tzolos E; Klein E; Kuronuma K; Grodecki K; Shou B; Rios R; Manral N; Cadet S; Danad I; Driessen RS; Berman DS; Nørgaard BL; Slomka PJ; Knaapen P; Dey D Circ Cardiovasc Imaging; 2022 Oct; 15(10):e014369. PubMed ID: 36252116 [TBL] [Abstract][Full Text] [Related]
4. Detecting lesion-specific ischemia in patients with coronary artery disease with computed tomography fractional flow reserve measured at different sites. Cai Z; Yu T; Yang Z; Hu H; Lin Y; Zhang H; Chen M; Shi G; Shen J BMC Med Imaging; 2023 Jun; 23(1):76. PubMed ID: 37277697 [TBL] [Abstract][Full Text] [Related]
5. [Value of fractional flow reserve derived from coronary computed tomographic angiography and plaque quantitative analysis in predicting adverse outcomes of non-obstructive coronary heart disease]. Liu J; Wu Y; Huang H; Wang P; Wu Q; Qiao H Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jun; 35(6):615-619. PubMed ID: 37366128 [TBL] [Abstract][Full Text] [Related]
6. Additive value of epicardial adipose tissue quantification to coronary CT angiography-derived plaque characterization and CT fractional flow reserve for the prediction of lesion-specific ischemia. Brandt V; Decker J; Schoepf UJ; Varga-Szemes A; Emrich T; Aquino G; Bayer RR; Carson L; Sullivan A; Ellis L; von Knebel Doeberitz PL; Ebersberger U; Bekeredjian R; Tesche C Eur Radiol; 2022 Jun; 32(6):4243-4252. PubMed ID: 35037968 [TBL] [Abstract][Full Text] [Related]
7. Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve. Yoon YE; Choi JH; Kim JH; Park KW; Doh JH; Kim YJ; Koo BK; Min JK; Erglis A; Gwon HC; Choe YH; Choi DJ; Kim HS; Oh BH; Park YB JACC Cardiovasc Imaging; 2012 Nov; 5(11):1088-96. PubMed ID: 23153908 [TBL] [Abstract][Full Text] [Related]
8. Diagnostic accuracy of coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) in patients before liver transplantation using CT-FFR machine learning algorithm. Schuessler M; Saner F; Al-Rashid F; Schlosser T Eur Radiol; 2022 Dec; 32(12):8761-8768. PubMed ID: 35729425 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Significant Coronary Artery Disease Based on CT Fractional Flow Reserve and Plaque Characteristics Using Random Forest Analysis in Machine Learning. Kawasaki T; Kidoh M; Kido T; Sueta D; Fujimoto S; Kumamaru KK; Uetani T; Tanabe Y; Ueda T; Sakabe D; Oda S; Yamashiro T; Tsujita K; Kato S; Yuki H; Utsunomiya D Acad Radiol; 2020 Dec; 27(12):1700-1708. PubMed ID: 32057618 [TBL] [Abstract][Full Text] [Related]
10. Radiomics features of pericoronary adipose tissue improve CT-FFR performance in predicting hemodynamically significant coronary artery stenosis. Yu L; Chen X; Ling R; Yu Y; Yang W; Sun J; Zhang J Eur Radiol; 2023 Mar; 33(3):2004-2014. PubMed ID: 36258046 [TBL] [Abstract][Full Text] [Related]
11. Optimized interpretation of fractional flow reserve derived from computed tomography: Comparison of three interpretation methods. Takagi H; Ishikawa Y; Orii M; Ota H; Niiyama M; Tanaka R; Morino Y; Yoshioka K J Cardiovasc Comput Tomogr; 2019; 13(2):134-141. PubMed ID: 30385326 [TBL] [Abstract][Full Text] [Related]
12. Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation. Hae H; Kang SJ; Kim WJ; Choi SY; Lee JG; Bae Y; Cho H; Yang DH; Kang JW; Lim TH; Lee CH; Kang DY; Lee PH; Ahn JM; Park DW; Lee SW; Kim YH; Lee CW; Park SW; Park SJ PLoS Med; 2018 Nov; 15(11):e1002693. PubMed ID: 30422987 [TBL] [Abstract][Full Text] [Related]
13. Comparison of machine learning-based CT fractional flow reserve with cardiac MR perfusion mapping for ischemia diagnosis in stable coronary artery disease. Guo W; Zhao S; Xu H; He W; Yin L; Yao Z; Xu Z; Jin H; Wu D; Li C; Yang S; Zeng M Eur Radiol; 2024 Sep; 34(9):5654-5665. PubMed ID: 38409549 [TBL] [Abstract][Full Text] [Related]
14. Impact of machine-learning-based coronary computed tomography angiography-derived fractional flow reserve on decision-making in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Brandt V; Schoepf UJ; Aquino GJ; Bekeredjian R; Varga-Szemes A; Emrich T; Bayer RR; Schwarz F; Kroencke TJ; Tesche C; Decker JA Eur Radiol; 2022 Sep; 32(9):6008-6016. PubMed ID: 35359166 [TBL] [Abstract][Full Text] [Related]
15. Impact of Coronary Computerized Tomography Angiography-Derived Plaque Quantification and Machine-Learning Computerized Tomography Fractional Flow Reserve on Adverse Cardiac Outcome. von Knebel Doeberitz PL; De Cecco CN; Schoepf UJ; Albrecht MH; van Assen M; De Santis D; Gaskins J; Martin S; Bauer MJ; Ebersberger U; Giovagnoli DA; Varga-Szemes A; Bayer RR; Schönberg SO; Tesche C Am J Cardiol; 2019 Nov; 124(9):1340-1348. PubMed ID: 31481177 [TBL] [Abstract][Full Text] [Related]
16. Impact of machine-learning CT-derived fractional flow reserve for the diagnosis and management of coronary artery disease in the randomized CRESCENT trials. Nous FMA; Budde RPJ; Lubbers MM; Yamasaki Y; Kardys I; Bruning TA; Akkerhuis JM; Kofflard MJM; Kietselaer B; Galema TW; Nieman K Eur Radiol; 2020 Jul; 30(7):3692-3701. PubMed ID: 32166492 [TBL] [Abstract][Full Text] [Related]
17. Pericoronary fat attenuation index and coronary plaque quantified from coronary computed tomography angiography identify ischemia-causing lesions. Yan H; Zhao N; Geng W; Hou Z; Gao Y; Lu B Int J Cardiol; 2022 Jun; 357():8-13. PubMed ID: 35306030 [TBL] [Abstract][Full Text] [Related]
18. Prospective comparison of integrated on-site CT-fractional flow reserve and static CT perfusion with coronary CT angiography for detection of flow-limiting coronary stenosis. Guo W; Lin Y; Taniguchi A; Zhu Y; Tripathi P; Yang S; Liu J; Yun H; Jin H; Zhang J; Yang J; Zeng M Eur Radiol; 2021 Jul; 31(7):5096-5105. PubMed ID: 33409778 [TBL] [Abstract][Full Text] [Related]
19. Diagnostic performance of fractional flow reserve derived from coronary CT angiography for detection of lesion-specific ischemia: A multi-center study and meta-analysis. Tang CX; Wang YN; Zhou F; Schoepf UJ; Assen MV; Stroud RE; Li JH; Zhang XL; Lu MJ; Zhou CS; Zhang DM; Yi Y; Yan J; Lu GM; Xu L; Zhang LJ Eur J Radiol; 2019 Jul; 116():90-97. PubMed ID: 31153580 [TBL] [Abstract][Full Text] [Related]
20. Peri-coronary inflammation is associated with findings on coronary computed tomography angiography and fractional flow reserve. Hoshino M; Yang S; Sugiyama T; Zhang J; Kanaji Y; Yamaguchi M; Hada M; Sumino Y; Horie T; Nogami K; Ueno H; Misawa T; Usui E; Murai T; Lee T; Yonetsu T; Kakuta T J Cardiovasc Comput Tomogr; 2020; 14(6):483-489. PubMed ID: 32057707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]