These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37827391)

  • 1. Impact of high shear blending on distribution of magnesium stearate on lactose for dry powder inhaled formulations.
    Welle A; Mehta M; Marek K; Peters H; van der Wel P; Imole O
    Int J Pharm; 2023 Nov; 647():123503. PubMed ID: 37827391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations on the Mechanism of Magnesium Stearate to Modify Aerosol Performance in Dry Powder Inhaled Formulations.
    Jetzer MW; Schneider M; Morrical BD; Imanidis G
    J Pharm Sci; 2018 Apr; 107(4):984-998. PubMed ID: 29247741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the influence of magnesium stearate content and mixing modality on the rheological properties and in vitro aerosolization of dry powder inhaler.
    Li J; Ma S; He X; Sun Y; Zhang X; Guan J; Mao S
    Int J Pharm; 2023 Jul; 642():123179. PubMed ID: 37364785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.
    Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD
    J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of dispersion enhancer selection in the development of novel tratinterol hydrochloride dry powder inhalation formulations.
    Liu T; Tong S; Liao Q; Pan L; Cheng M; Rantanen J; Cun D; Yang M
    Int J Pharm; 2023 Mar; 635():122702. PubMed ID: 36773729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations.
    Kinnunen H; Hebbink G; Peters H; Shur J; Price R
    AAPS PharmSciTech; 2014 Aug; 15(4):898-909. PubMed ID: 24756910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of fine lactose and magnesium stearate on low dose dry powder inhaler formulations.
    Guchardi R; Frei M; John E; Kaerger JS
    Int J Pharm; 2008 Feb; 348(1-2):10-7. PubMed ID: 17689898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in lactose blend formulations for carrier-based dry powder inhalation.
    Hebbink GA; Jaspers M; Peters HJW; Dickhoff BHJ
    Adv Drug Deliv Rev; 2022 Oct; 189():114527. PubMed ID: 36070848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the effects of high shear blending on lactose and drug using fluidised bed elutriation.
    Willetts JP; Robbins PT; Roche TC; Bowley M; Bridson RH
    Int J Pharm; 2012 Sep; 434(1-2):272-9. PubMed ID: 22683647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersibility of lactose fines as compared to API in dry powders for inhalation.
    Thalberg K; Åslund S; Skogevall M; Andersson P
    Int J Pharm; 2016 May; 504(1-2):27-38. PubMed ID: 26965200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From single excipients to dual excipient platforms in dry powder inhaler products.
    Shur J; Price R; Lewis D; Young PM; Woollam G; Singh D; Edge S
    Int J Pharm; 2016 Dec; 514(2):374-383. PubMed ID: 27262269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the critical material attributes of lactose monohydrate in carrier based dry powder inhaler formulations using artificial neural networks.
    Kinnunen H; Hebbink G; Peters H; Shur J; Price R
    AAPS PharmSciTech; 2014 Aug; 15(4):1009-20. PubMed ID: 24831088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low powder mass filling of dry powder inhalation formulations.
    Eskandar F; Lejeune M; Edge S
    Drug Dev Ind Pharm; 2011 Jan; 37(1):24-32. PubMed ID: 20738180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Granulated Lactose as a Carrier for Dry Powder Inhaler Formulations 2: Effect of Drugs and Drug Loading.
    Du P; Du J; Smyth HDC
    J Pharm Sci; 2017 Jan; 106(1):366-376. PubMed ID: 27939234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Puerarin dry powder inhaler formulations for pulmonary delivery: Development and characterization.
    Rashid MA; Muneer S; Wang T; Alhamhoom Y; Rintoul L; Izake EL; Islam N
    PLoS One; 2021; 16(4):e0249683. PubMed ID: 33848310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate.
    Lau M; Young PM; Traini D
    AAPS PharmSciTech; 2017 Aug; 18(6):2248-2259. PubMed ID: 28070849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limitations of high dose carrier based formulations.
    Yeung S; Traini D; Tweedie A; Lewis D; Church T; Young PM
    Int J Pharm; 2018 Jun; 544(1):141-152. PubMed ID: 29649519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers.
    Tan BMJ; Chan LW; Heng PWS
    Mol Pharm; 2018 Apr; 15(4):1635-1642. PubMed ID: 29490144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving powder flow properties of a cohesive lactose monohydrate powder by intensive mechanical dry coating.
    Zhou Q; Armstrong B; Larson I; Stewart PJ; Morton DA
    J Pharm Sci; 2010 Feb; 99(2):969-81. PubMed ID: 19795479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of fines in the modification of the fluidization and dispersion mechanism within dry powder inhaler formulations.
    Shur J; Harris H; Jones MD; Kaerger JS; Price R
    Pharm Res; 2008 Jul; 25(7):1631-40. PubMed ID: 18239861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.