These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37827476)

  • 81. Opportunities to use electronic health record audit logs to improve cancer care.
    Huilgol YS; Adler-Milstein J; Ivey SL; Hong JC
    Cancer Med; 2022 Sep; 11(17):3296-3303. PubMed ID: 35348298
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Prediction of acute kidney injury after cardiac surgery: model development using a Chinese electronic health record dataset.
    Zhang H; Wang Z; Tang Y; Chen X; You D; Wu Y; Yu M; Chen W; Zhao Y; Chen X
    J Transl Med; 2022 Apr; 20(1):166. PubMed ID: 35397573
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Sequential Data-Based Patient Similarity Framework for Patient Outcome Prediction: Algorithm Development.
    Wang N; Wang M; Zhou Y; Liu H; Wei L; Fei X; Chen H
    J Med Internet Res; 2022 Jan; 24(1):e30720. PubMed ID: 34989682
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Predicting Inpatient Acute Kidney Injury over Different Time Horizons: How Early and Accurate?
    Cheng P; Waitman LR; Hu Y; Liu M
    AMIA Annu Symp Proc; 2017; 2017():565-574. PubMed ID: 29854121
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Detecting rare diseases in electronic health records using machine learning and knowledge engineering: Case study of acute hepatic porphyria.
    Cohen AM; Chamberlin S; Deloughery T; Nguyen M; Bedrick S; Meninger S; Ko JJ; Amin JJ; Wei AJ; Hersh W
    PLoS One; 2020; 15(7):e0235574. PubMed ID: 32614911
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Does Artificial Intelligence Make Clinical Decision Better? A Review of Artificial Intelligence and Machine Learning in Acute Kidney Injury Prediction.
    Lee TH; Chen JJ; Cheng CT; Chang CH
    Healthcare (Basel); 2021 Nov; 9(12):. PubMed ID: 34946388
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Prediction Models for AKI in ICU: A Comparative Study.
    Qian Q; Wu J; Wang J; Sun H; Yang L
    Int J Gen Med; 2021; 14():623-632. PubMed ID: 33664585
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Developing machine learning models to personalize care levels among emergency room patients for hospital admission.
    Nguyen M; Corbin CK; Eulalio T; Ostberg NP; Machiraju G; Marafino BJ; Baiocchi M; Rose C; Chen JH
    J Am Med Inform Assoc; 2021 Oct; 28(11):2423-2432. PubMed ID: 34402507
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Prediction of Acute Kidney Injury after Liver Transplantation: Machine Learning Approaches vs. Logistic Regression Model.
    Lee HC; Yoon SB; Yang SM; Kim WH; Ryu HG; Jung CW; Suh KS; Lee KH
    J Clin Med; 2018 Nov; 7(11):. PubMed ID: 30413107
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform.
    Ren Y; Loftus TJ; Datta S; Ruppert MM; Guan Z; Miao S; Shickel B; Feng Z; Giordano C; Upchurch GR; Rashidi P; Ozrazgat-Baslanti T; Bihorac A
    JAMA Netw Open; 2022 May; 5(5):e2211973. PubMed ID: 35576007
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Real-Time Clinical Decision Support Based on Recurrent Neural Networks for In-Hospital Acute Kidney Injury: External Validation and Model Interpretation.
    Kim K; Yang H; Yi J; Son HE; Ryu JY; Kim YC; Jeong JC; Chin HJ; Na KY; Chae DW; Han SS; Kim S
    J Med Internet Res; 2021 Apr; 23(4):e24120. PubMed ID: 33861200
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Assessing the effects of data drift on the performance of machine learning models used in clinical sepsis prediction.
    Rahmani K; Thapa R; Tsou P; Casie Chetty S; Barnes G; Lam C; Foon Tso C
    Int J Med Inform; 2023 May; 173():104930. PubMed ID: 36893656
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Electronic health record-based predictive models for acute kidney injury screening in pediatric inpatients.
    Wang L; McGregor TL; Jones DP; Bridges BC; Fleming GM; Shirey-Rice J; McLemore MF; Chen L; Weitkamp A; Byrne DW; Van Driest SL
    Pediatr Res; 2017 Sep; 82(3):465-473. PubMed ID: 28486440
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Using machine learning to predict outcomes following carotid endarterectomy.
    Li B; Beaton D; Eisenberg N; Lee DS; Wijeysundera DN; Lindsay TF; de Mestral C; Mamdani M; Roche-Nagle G; Al-Omran M
    J Vasc Surg; 2023 Oct; 78(4):973-987.e6. PubMed ID: 37211142
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Causal risk factor discovery for severe acute kidney injury using electronic health records.
    Chen W; Hu Y; Zhang X; Wu L; Liu K; He J; Tang Z; Song X; Waitman LR; Liu M
    BMC Med Inform Decis Mak; 2018 Mar; 18(Suppl 1):13. PubMed ID: 29589567
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Machine learning optimization of an electronic health record audit for heart failure in primary care.
    Raat W; Smeets M; Henrard S; Aertgeerts B; Penders J; Droogne W; Mullens W; Janssens S; Vaes B
    ESC Heart Fail; 2022 Feb; 9(1):39-47. PubMed ID: 34816632
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A novel electronic health record-based, machine-learning model to predict severe hypoglycemia leading to hospitalizations in older adults with diabetes: A territory-wide cohort and modeling study.
    Shi M; Yang A; Lau ESH; Luk AOY; Ma RCW; Kong APS; Wong RSM; Chan JCM; Chan JCN; Chow E
    PLoS Med; 2024 Apr; 21(4):e1004369. PubMed ID: 38607977
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A pattern-discovery-based outcome predictive tool integrated with clinical data repository: design and a case study on contrast related acute kidney injury.
    Li Y; Chan TM; Feng J; Tao L; Jiang J; Zheng B; Huo Y; Li J
    BMC Med Inform Decis Mak; 2022 Apr; 22(1):103. PubMed ID: 35428291
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Predicting acute kidney injury at hospital re-entry using high-dimensional electronic health record data.
    Weisenthal SJ; Quill C; Farooq S; Kautz H; Zand MS
    PLoS One; 2018; 13(11):e0204920. PubMed ID: 30458044
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A multi-center study on the adaptability of a shared foundation model for electronic health records.
    Guo LL; Fries J; Steinberg E; Fleming SL; Morse K; Aftandilian C; Posada J; Shah N; Sung L
    NPJ Digit Med; 2024 Jun; 7(1):171. PubMed ID: 38937550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.