These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37827631)
1. A dual-cycle amplification-based electrochemical platform for sensitive detection of tobramycin. Zhang B; Ma X; Xie L; Li X; Chen L; He B Anal Chim Acta; 2023 Oct; 1279():341770. PubMed ID: 37827631 [TBL] [Abstract][Full Text] [Related]
2. Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework. Zhang Y; Li B; Wei X; Gu Q; Chen M; Zhang J; Mo S; Wang J; Xue L; Ding Y; Wu Q Mikrochim Acta; 2021 Aug; 188(8):286. PubMed ID: 34345968 [TBL] [Abstract][Full Text] [Related]
3. A sensitive tobramycin electrochemical aptasensor based on multiple signal amplification cascades. Zhao Y; Chen Q; Liu Y; Jiang B; Yuan R; Xiang Y Bioelectrochemistry; 2024 Dec; 160():108797. PubMed ID: 39154628 [TBL] [Abstract][Full Text] [Related]
4. Dual-sensitized heterojunction Ag Jin Y; Yu W; Chen L; Yuan R; Liu J; Fu Y; Chai Y Biosens Bioelectron; 2024 Sep; 260():116459. PubMed ID: 38838575 [TBL] [Abstract][Full Text] [Related]
5. An electrochemical aptasensor based on PEI-C He B; Wang S Mikrochim Acta; 2021 Jan; 188(1):22. PubMed ID: 33404928 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive label-free electrochemical aptasensor for Pb Li M; Liu H; He B; Xie L; Cao X; Jin H; Wei M; Ren W; Suo Z; Xu Y Talanta; 2024 Aug; 276():126260. PubMed ID: 38759364 [TBL] [Abstract][Full Text] [Related]
7. Bilayer magnetic-plasmonic satellite nanoassemblies for SERS detection of tobramycin with exonuclease amplification. Zhao B; Liu H; Wang H; Zhang Y; Wang X; Zhou N Biosens Bioelectron; 2022 Dec; 218():114789. PubMed ID: 36242904 [TBL] [Abstract][Full Text] [Related]
8. A new photoelectrochemical biosensor for ultrasensitive determination of nucleic acids based on a three-stage cascade signal amplification strategy. Xiong E; Yan X; Zhang X; Li Y; Yang R; Meng L; Chen J Analyst; 2018 Jun; 143(12):2799-2806. PubMed ID: 29862398 [TBL] [Abstract][Full Text] [Related]
9. A novel ratiometric electrochemical aptasensor for highly sensitive detection of carcinoembryonic antigen. Wang P; Xie Y; Ma H; Liu J; Liu C; Feng W; Xi S Anal Biochem; 2022 Dec; 659():114957. PubMed ID: 36265690 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical aptamer sensor based on AgNPs@PDANSs and "sandwich" structure guidance for the detection of tobramycin in water samples. Zhao K; Ma X; Wang M; Qu Z; Chen H; He B; Chen H; Zhang B Anal Methods; 2024 Aug; 16(33):5665-5675. PubMed ID: 39113561 [TBL] [Abstract][Full Text] [Related]
11. Triblock polyadenine-based electrochemical aptasensor for ultra-sensitive detection of carcinoembryonic antigen via exonuclease III-assisted target recycling and hybridization chain reaction. Huang S; Wang Y; Liu S; Li H; Yang M; Fang Y; Xiao Q Bioelectrochemistry; 2024 Oct; 159():108749. PubMed ID: 38823375 [TBL] [Abstract][Full Text] [Related]
12. "Turn-off" photoelectrochemical aptasensor based on g-C Qiao L; Zhu Y; Zeng T; Zhang Y; Zhang M; Song K; Yin N; Tao Y; Zhao Y; Zhang Y; Zhang C Food Chem; 2023 Mar; 403():134287. PubMed ID: 36183467 [TBL] [Abstract][Full Text] [Related]
13. An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization. Liu C; Xiang G; Jiang D; Liu L; Liu F; Luo F; Pu X Analyst; 2015 Nov; 140(22):7784-91. PubMed ID: 26460269 [TBL] [Abstract][Full Text] [Related]
14. Self-powered photoelectrochemical aptasensor based on hollow tubular g-C Zhang Y; Zhu Y; Zeng T; Qiao L; Zhang M; Song K; Yin N; Tao Y; Zhao Y; Zhang C; Zhang Y Anal Chim Acta; 2023 Apr; 1250():340951. PubMed ID: 36898823 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical aptasensor based on exonuclease III-mediated signal amplification for sensitive detection of vomitoxin in cornmeal. Wang K; Yan H; He B; Xie L; Liu R; Wei M; Jin H; Ren W; Suo Z; Xu Y Sci Total Environ; 2023 Jun; 875():162561. PubMed ID: 36870493 [TBL] [Abstract][Full Text] [Related]
16. Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon: Label-free aptasensor for ultrasensitive tobramycin detection. Wang S; Li Z; Duan F; Hu B; He L; Wang M; Zhou N; Jia Q; Zhang Z Anal Chim Acta; 2019 Jan; 1047():150-162. PubMed ID: 30567645 [TBL] [Abstract][Full Text] [Related]
17. Label free aptasensor for ultrasensitive detection of tobramycin residue in pasteurized cow's milk based on resonance scattering spectra and nanogold catalytic amplification. Yan S; Lai X; Wang Y; Ye N; Xiang Y Food Chem; 2019 Oct; 295():36-41. PubMed ID: 31174769 [TBL] [Abstract][Full Text] [Related]
18. G-quadruplex based Exo III-assisted signal amplification aptasensor for the colorimetric detection of adenosine. Xu L; Shen X; Li B; Zhu C; Zhou X Anal Chim Acta; 2017 Aug; 980():58-64. PubMed ID: 28622804 [TBL] [Abstract][Full Text] [Related]
19. Catalytic hairpin assembly assisted target-dependent DNAzyme nanosystem coupled with AgPt@Thi for the detection of lead ion. Sun X; Dong S; Zhao W Anal Chim Acta; 2022 May; 1205():339735. PubMed ID: 35414403 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical detection of tobramycin based on enzymes-assisted dual signal amplification by using a novel truncated aptamer with high affinity. Nie J; Yuan L; Jin K; Han X; Tian Y; Zhou N Biosens Bioelectron; 2018 Dec; 122():254-262. PubMed ID: 30268963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]