These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37828108)
1. Modeling the potential global distribution of the Egyptian cotton leafworm, Spodoptera littoralis under climate change. ElShahed SM; Mostafa ZK; Radwan MH; Hosni EM Sci Rep; 2023 Oct; 13(1):17314. PubMed ID: 37828108 [TBL] [Abstract][Full Text] [Related]
2. Global risk of invasion by Bactrocera zonata: Implications on horticultural crop production under changing climatic conditions. Zingore KM; Sithole G; Abdel-Rahman EM; Mohamed SA; Ekesi S; Tanga CM; Mahmoud MEE PLoS One; 2020; 15(12):e0243047. PubMed ID: 33362266 [TBL] [Abstract][Full Text] [Related]
3. Partiti-like viruses from African armyworm increase larval and pupal mortality of a novel host: the Egyptian cotton leafworm. Xu P; Rice A; Li T; Wang J; Yang X; Yuan H; Graham RI; Wilson K Pest Manag Sci; 2022 Apr; 78(4):1529-1537. PubMed ID: 34965003 [TBL] [Abstract][Full Text] [Related]
4. Biological performance of quercetin on the cotton leaf-worm larvae, Spodoptera littoralis Boisd. (Lep., Noctuidae) and prevailing natural enemies in the Egyptian cotton fields. Mesbah HA; Saad AS; Mourad AK; Taman FA; Mohamed IB Commun Agric Appl Biol Sci; 2007; 72(3):611-22. PubMed ID: 18399494 [TBL] [Abstract][Full Text] [Related]
5. Influence of the nonsteroidal ecdysone agonist, tebufenozide, on certain biological and physiological parameters of the cotton leaf-worm, Spodoptera littoralis (Boisd.) (Noctuidae: Lepidoptera) in Egypt. Mourad AK; Saad AS; Esawy MM; Hassan SM Commun Agric Appl Biol Sci; 2004; 69(3):119-39. PubMed ID: 15759403 [TBL] [Abstract][Full Text] [Related]
6. Genomic features of the polyphagous cotton leafworm Spodoptera littoralis. Wu C; Zhang L; Liu B; Gao B; Huang C; Zhang J; Jin M; Wang H; Peng Y; Rice A; Hegazi E; Wilson K; Xu P; Xiao Y BMC Genomics; 2022 May; 23(1):353. PubMed ID: 35525948 [TBL] [Abstract][Full Text] [Related]
7. Which SDM Model, CLIMEX vs. MaxEnt, Best Forecasts Hayat U; Shi J; Wu Z; Rizwan M; Haider MS Insects; 2024 May; 15(5):. PubMed ID: 38786880 [TBL] [Abstract][Full Text] [Related]
8. Behavioral and metabolic effects of sublethal doses of two insecticides, chlorpyrifos and methomyl, in the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Dewer Y; Pottier MA; Lalouette L; Maria A; Dacher M; Belzunces LP; Kairo G; Renault D; Maibeche M; Siaussat D Environ Sci Pollut Res Int; 2016 Feb; 23(4):3086-96. PubMed ID: 26566611 [TBL] [Abstract][Full Text] [Related]
9. Insecticidal Activity of Giuliano G; Campolo O; Forte G; Urbaneja A; Pérez-Hedo M; Latella I; Palmeri V; Giunti G Insects; 2024 Jun; 15(7):. PubMed ID: 39057209 [No Abstract] [Full Text] [Related]
10. Joint action of quercetin with four insecticides on the cotton leaf-worm larvae, Spodoptera littoralis Boisd. (Lep. : Noctuidae) in Egypt. Mesbah HA; Saad AS; Mourad AK; Taman FA; Mohamed IB Commun Agric Appl Biol Sci; 2007; 72(3):445-57. PubMed ID: 18399473 [TBL] [Abstract][Full Text] [Related]
11. Horizon scanning to assess the bioclimatic potential for the alien species Spodoptera eridania and its parasitoids after pest detection in West and Central Africa. Tepa-Yotto GT; Gouwakinnou GN; Fagbohoun JR; Tamò M; Saethre MG Pest Manag Sci; 2021 Oct; 77(10):4437-4446. PubMed ID: 33991052 [TBL] [Abstract][Full Text] [Related]
12. Targeting the diuretic hormone receptor to control the cotton leafworm, Spodoptera littoralis. Apone F; Ruggiero A; Tortora A; Tito A; Grimaldi MR; Arciello S; Andrenacci D; Di Lelio I; Colucci G J Insect Sci; 2014; 14():87. PubMed ID: 25368043 [TBL] [Abstract][Full Text] [Related]
13. Global Potential Geographical Distribution of the Southern Armyworm ( Zhang Y; Zhao H; Qi Y; Li M; Yang N; Guo J; Xian X; Liu W Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508469 [TBL] [Abstract][Full Text] [Related]
14. Microbial control of the cotton leafworm Spodoptera littoralis (Boisd.) by Egyptian Bacillus thuringiensis isolates. Alfazairy AA; El-Ahwany AM; Mohamed EA; Zaghloul HA; El-Helow ER Folia Microbiol (Praha); 2013 Mar; 58(2):155-62. PubMed ID: 22983675 [TBL] [Abstract][Full Text] [Related]
15. The hotter the better? Climate change and voltinism of Spodoptera eridania estimated with different methods. Sampaio F; Krechemer FS; Marchioro CA J Therm Biol; 2021 May; 98():102946. PubMed ID: 34016363 [TBL] [Abstract][Full Text] [Related]
16. Laboratory evaluation of Isaria fumosorosea against Spodoptera littoralis. Zemek R; Hussein HM; Prenerová E Commun Agric Appl Biol Sci; 2012; 77(4):685-9. PubMed ID: 23885438 [TBL] [Abstract][Full Text] [Related]
17. First study on the root endophytic fungus Trichoderma hamatum as an entomopathogen: Development of a fungal bioinsecticide against cotton leafworm (Spodoptera littoralis). Lana M; Simón O; Velasco P; Rodríguez VM; Caballero P; Poveda J Microbiol Res; 2023 May; 270():127334. PubMed ID: 36804128 [TBL] [Abstract][Full Text] [Related]
18. Fungus under a Changing Climate: Modeling the Current and Future Global Distribution of Alkhalifah DHM; Damra E; Melhem MB; Hozzein WN Microorganisms; 2023 Feb; 11(2):. PubMed ID: 36838433 [TBL] [Abstract][Full Text] [Related]
19. Pest scenario of Spodoptera litura (Fab.) on groundnut under representative concentration pathways (RCPs) based climate change scenarios. Srinivasa Rao M; Rama Rao CA; Sreelakshmi P; Islam A; Subba Rao AVM; Ravindra Chary G; Bhaskar S J Therm Biol; 2020 Dec; 94():102749. PubMed ID: 33292990 [TBL] [Abstract][Full Text] [Related]
20. Feeding responses and digestive function of Hosseini Mousavi SM; Hemmati SA; Rasekh A Bull Entomol Res; 2023 Jun; 113(3):430-438. PubMed ID: 36919372 [No Abstract] [Full Text] [Related] [Next] [New Search]