These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37828108)
21. Predicting the habitat suitability of the invasive white mango scale, Aulacaspis tubercularis; Newstead, 1906 (Hemiptera: Diaspididae) using bioclimatic variables. Azrag AG; Mohamed SA; Ndlela S; Ekesi S Pest Manag Sci; 2022 Oct; 78(10):4114-4126. PubMed ID: 35657692 [TBL] [Abstract][Full Text] [Related]
22. Specific response to herbivore-induced de novo synthesized plant volatiles provides reliable information for host plant selection in a moth. Zakir A; Bengtsson M; Sadek MM; Hansson BS; Witzgall P; Anderson P J Exp Biol; 2013 Sep; 216(Pt 17):3257-63. PubMed ID: 23737555 [TBL] [Abstract][Full Text] [Related]
23. Risk Assessment of Li M; Jin Z; Qi Y; Zhao H; Yang N; Guo J; Chen B; Xian X; Liu W Insects; 2024 May; 15(5):. PubMed ID: 38786904 [No Abstract] [Full Text] [Related]
24. Efficacy of some plant oils alone and/or combined with different insecticides on the cotton leaf-worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) in Egypt. Mesbah HA; Mourad AK; Rokaia AZ Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):305-28. PubMed ID: 17385497 [TBL] [Abstract][Full Text] [Related]
25. Compatibility between the endoparasitoid Hyposoter didymator and the entomopathogenic fungus Metarhizium brunneum: a laboratory simulation for the simultaneous use to control Spodoptera littoralis. Miranda-Fuentes P; Quesada-Moraga E; Aldebis HK; Yousef-Naef M Pest Manag Sci; 2020 Mar; 76(3):1060-1070. PubMed ID: 31515940 [TBL] [Abstract][Full Text] [Related]
26. Predicting the invasion risk of rugose spiraling whitefly, Aleurodicus rugioperculatus, in India based on CMIP6 projections by MaxEnt. Maruthadurai R; Das B; Ramesh R Pest Manag Sci; 2023 Jan; 79(1):295-305. PubMed ID: 36151887 [TBL] [Abstract][Full Text] [Related]
27. Modeling the Potential Global Distribution of Honeybee Pest, Hosni EM; Al-Khalaf AA; Nasser MG; Abou-Shaara HF; Radwan MH Insects; 2022 May; 13(5):. PubMed ID: 35621818 [TBL] [Abstract][Full Text] [Related]
28. Tracing the future of epidemics: Coincident niche distribution of host animals and disease incidence revealed climate-correlated risk shifts of main zoonotic diseases in China. Cao B; Bai C; Wu K; La T; Su Y; Che L; Zhang M; Lu Y; Gao P; Yang J; Xue Y; Li G Glob Chang Biol; 2023 Jul; 29(13):3723-3746. PubMed ID: 37026556 [TBL] [Abstract][Full Text] [Related]
29. Climate change impacts on the potential worldwide distribution of the soybean pest, Piezodorus guildinii (Hemiptera: Pentatomidae). Chen J; Jiang K; Wang S; Li Y; Zhang Y; Tang Z; Bu W J Econ Entomol; 2023 Jun; 116(3):761-770. PubMed ID: 37094809 [TBL] [Abstract][Full Text] [Related]
30. Identification, phylogenetic analysis and expression profile of an anionic insect defensin gene, with antibacterial activity, from bacterial-challenged cotton leafworm, Spodoptera littoralis. Seufi AM; Hafez EE; Galal FH BMC Mol Biol; 2011 Nov; 12():47. PubMed ID: 22067477 [TBL] [Abstract][Full Text] [Related]
31. Complete mitochondrial genome of Li Z; Wang W; Zhang L Mitochondrial DNA B Resour; 2021 Feb; 6(2):432-434. PubMed ID: 33659701 [TBL] [Abstract][Full Text] [Related]
32. Computational biogeographic distribution of the fall armyworm ( Abdel-Rahman EM; Kimathi E; Mudereri BT; Tonnang HEZ; Mongare R; Niassy S; Subramanian S Heliyon; 2023 Jun; 9(6):e16144. PubMed ID: 37265631 [TBL] [Abstract][Full Text] [Related]
33. Modulation of reproductive behaviors by non-host volatiles in the polyphagous Egyptian cotton leafworm, Spodoptera littoralis. Binyameen M; Hussain A; Yousefi F; Birgersson G; Schlyter F J Chem Ecol; 2013 Oct; 39(10):1273-83. PubMed ID: 24105603 [TBL] [Abstract][Full Text] [Related]
34. Fate of synthetic chemicals in the agronomic insect pest Spodoptera littoralis: experimental feeding-contact assay and toxicokinetic model. Römer CI; Ashauer R; Escher BI; Höfer K; Muehlebach M; Sadeghi-Tehran P; Sherborne N; Buchholz A J Econ Entomol; 2024 Jun; 117(3):982-992. PubMed ID: 38691062 [TBL] [Abstract][Full Text] [Related]
35. Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the Americas: lessons and implications for Bt corn IRM in China. Huang F Insect Sci; 2021 Jun; 28(3):574-589. PubMed ID: 32478944 [TBL] [Abstract][Full Text] [Related]
36. Trajectory modeling revealed a southwest-northeast migration corridor for fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) emerging from the North China Plain. Wu QL; Jiang YY; Liu J; Hu G; Wu KM Insect Sci; 2021 Jun; 28(3):649-661. PubMed ID: 32691947 [TBL] [Abstract][Full Text] [Related]
37. Life Table Parameters and Digestive Enzyme Activity of Hemmati SA; Shishehbor P; Stelinski LL Insects; 2022 Jul; 13(7):. PubMed ID: 35886837 [No Abstract] [Full Text] [Related]
38. Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) using MaxEnt. Santana PA; Kumar L; Da Silva RS; Pereira JL; Picanço MC Pest Manag Sci; 2019 Oct; 75(10):2706-2715. PubMed ID: 30779307 [TBL] [Abstract][Full Text] [Related]
39. Identifying Potentially Climatic Suitability Areas for Fan S; Chen C; Zhao Q; Wei J; Zhang H Insects; 2020 Oct; 11(10):. PubMed ID: 33020387 [No Abstract] [Full Text] [Related]
40. Effect of exogenous ecdysteroids on growth, development, and fertility of the Egyptian cotton leafworm Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae). Ufimtsev KG; Shirshova TI; Volodin VV; Volodina SO; Alekseev AA; Raushenbakh IY Dokl Biol Sci; 2006; 411():512-4. PubMed ID: 17425056 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]