These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37828812)

  • 21. Some statistical consideration in transcriptome-wide association studies.
    Xue H; Pan W;
    Genet Epidemiol; 2020 Apr; 44(3):221-232. PubMed ID: 31821608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Addressing unmeasured confounders in cohort studies: Instrumental variable method for a time-fixed exposure on an outcome trajectory.
    Le Bourdonnec K; Samieri C; Tzourio C; Mura T; Mishra A; Trégouët DA; Proust-Lima C
    Biom J; 2024 Jan; 66(1):e2200358. PubMed ID: 38098309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing causal treatment effect estimation when using large observational datasets.
    John ER; Abrams KR; Brightling CE; Sheehan NA
    BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitivity analysis of G-estimators to invalid instrumental variables.
    Vancak V; Sjölander A
    Stat Med; 2023 Oct; 42(23):4257-4281. PubMed ID: 37497859
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simple efficient bias corrected instrumental variable estimator for randomized trials with noncompliance.
    Chan KC
    Contemp Clin Trials; 2012 Jul; 33(4):786-93. PubMed ID: 22484340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling.
    Terza JV; Basu A; Rathouz PJ
    J Health Econ; 2008 May; 27(3):531-43. PubMed ID: 18192044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Instrumental variable analysis of multiplicative models with potentially invalid instruments.
    Shardell M; Ferrucci L
    Stat Med; 2016 Dec; 35(29):5430-5447. PubMed ID: 27527517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Instrumental variable analysis in the context of dichotomous outcome and exposure with a numerical experiment in pharmacoepidemiology.
    Koladjo BF; Escolano S; Tubert-Bitter P
    BMC Med Res Methodol; 2018 Jun; 18(1):61. PubMed ID: 29929467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Instrumental Variable Analyses and Selection Bias.
    Canan C; Lesko C; Lau B
    Epidemiology; 2017 May; 28(3):396-398. PubMed ID: 28169934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Instrumental variable estimation in a survival context.
    Tchetgen Tchetgen EJ; Walter S; Vansteelandt S; Martinussen T; Glymour M
    Epidemiology; 2015 May; 26(3):402-10. PubMed ID: 25692223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity analyses for average treatment effects when outcome is censored by death in instrumental variable models.
    Lee K; Lorch SA; Small DS
    Stat Med; 2019 Jun; 38(13):2303-2316. PubMed ID: 30785641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A tutorial on the use of instrumental variables in pharmacoepidemiology.
    Ertefaie A; Small DS; Flory JH; Hennessy S
    Pharmacoepidemiol Drug Saf; 2017 Apr; 26(4):357-367. PubMed ID: 28239929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mendelian randomization in the multivariate general linear model framework.
    Allman PH; Aban I; Long DM; Patki A; MacKenzie T; Irvin MR; Lange LA; Lange E; Cutter G; Tiwari HK
    Genet Epidemiol; 2022 Feb; 46(1):17-31. PubMed ID: 34672390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joint mixed-effects models for causal inference with longitudinal data.
    Shardell M; Ferrucci L
    Stat Med; 2018 Feb; 37(5):829-846. PubMed ID: 29205454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Causal Proportional Hazards Estimation with a Binary Instrumental Variable.
    Kianian B; Kim JI; Fine JP; Peng L
    Stat Sin; 2021 Apr; 31(2):673-699. PubMed ID: 34970068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Summarizing causal differences in survival curves in the presence of unmeasured confounding.
    Martínez-Camblor P; MacKenzie TA; Staiger DO; Goodney PP; O'Malley AJ
    Int J Biostat; 2020 Sep; 17(2):223-240. PubMed ID: 32946418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study.
    McGuinness MB; Kasza J; Karahalios A; Guymer RH; Finger RP; Simpson JA
    BMC Med Res Methodol; 2019 Dec; 19(1):223. PubMed ID: 31795945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses.
    Palmer TM; Thompson JR; Tobin MD; Sheehan NA; Burton PR
    Int J Epidemiol; 2008 Oct; 37(5):1161-8. PubMed ID: 18463132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates.
    Burgess S; Labrecque JA
    Eur J Epidemiol; 2018 Oct; 33(10):947-952. PubMed ID: 30039250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.