These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37829570)

  • 1. Transmissive Labyrinthine Acoustic Metamaterial-Based Holography for Extraordinary Energy Harvesting.
    Bansal S; Choi C; Hardwick J; Bagchi B; Tiwari MK; Subramanian S
    Adv Eng Mater; 2023 Feb; 25(4):2201117. PubMed ID: 37829570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metamaterials for Acoustic Noise Filtering and Energy Harvesting.
    Mir F; Mandal D; Banerjee S
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of an acoustic energy harvester consisting of electro-spun polyvinylidene difluoride nanofibers.
    Zhang R; Shao H; Lin T; Wang X
    J Acoust Soc Am; 2022 Jun; 151(6):3838. PubMed ID: 35778177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Developments of Acoustic Energy Harvesting: A Review.
    Yuan M; Cao Z; Luo J; Chou X
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30641876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous low-frequency vibration isolation and energy harvesting via attachable metamaterials.
    Hyun J; Jung J; Park J; Choi W; Kim M
    Nano Converg; 2024 Sep; 11(1):38. PubMed ID: 39327405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array.
    Xie Y; Shen C; Wang W; Li J; Suo D; Popa BI; Jing Y; Cummer SA
    Sci Rep; 2016 Oct; 6():35437. PubMed ID: 27739472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibration Energy Harvesting from the Subwavelength Interface State of a Topological Metamaterial Beam.
    Lu Y; Wang Z; Zhu X; Hu C; Yang J; Wu Y
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing.
    Yang J; Chen J; Liu Y; Yang W; Su Y; Wang ZL
    ACS Nano; 2014 Mar; 8(3):2649-57. PubMed ID: 24524252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thin-film acoustic metamaterial absorber with tunable sound absorption characteristics.
    Xu H; Kong D
    J Acoust Soc Am; 2023 Jun; 153(6):3493-3500. PubMed ID: 37370247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Metamaterials Gyro-Structure Piezoelectric Nanogenerators for Energy Harvesting under Quasi-Static Excitations in Ocean Engineering.
    Jiao P; Yang Y; Egbe KI; He Z; Lin Y
    ACS Omega; 2021 Jun; 6(23):15348-15360. PubMed ID: 34151113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic energy harvesting using an electromechanical Helmholtz resonator.
    Liu F; Phipps A; Horowitz S; Ngo K; Cattafesta L; Nishida T; Sheplak M
    J Acoust Soc Am; 2008 Apr; 123(4):1983-90. PubMed ID: 18397006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on an Optimized Quarter-Wavelength Resonator-Based Triboelectric Nanogenerator for Efficient Low-Frequency Acoustic Energy Harvesting.
    Xiao X; Liu L; Xi Z; Yu H; Li W; Wang Q; Zhao C; Huang Y; Xu M
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibration Energy Conversion Power Supply Based on the Piezoelectric Thin Film Planar Array.
    Wang B; Lan D; Zeng F; Li W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording.
    Fan X; Chen J; Yang J; Bai P; Li Z; Wang ZL
    ACS Nano; 2015 Apr; 9(4):4236-43. PubMed ID: 25790372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A High-Performance Coniform Helmholtz Resonator-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting.
    Yuan H; Yu H; Liu X; Zhao H; Zhang Y; Xi Z; Zhang Q; Liu L; Lin Y; Pan X; Xu M
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical-Modulated Flexible Acoustic Metamaterial: Enhancing Low-Frequency Absorption via an Ionic Electroactive Polymer.
    Wang T; Zhang Y; Li B; Hu Y; Aabloo A; Chang L
    ACS Appl Mater Interfaces; 2024 Sep; 16(38):51433-51446. PubMed ID: 39270217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic metamaterials with circular sector cavities and programmable densities.
    Akl W; Elsabbagh A; Baz A
    J Acoust Soc Am; 2012 Oct; 132(4):2857-65. PubMed ID: 23039552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlating multimode strain and electrode configurations for high-performance gradient-index phononic crystal-based piezoelectric energy harvesting.
    Kim DS; Choi W; Kim SW; Kim EJ; Nahm S; Kim M
    Mater Horiz; 2023 Jan; 10(1):149-159. PubMed ID: 36321368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric acoustic energy transport in non-Hermitian metamaterials.
    Thevamaran R; Branscomb RM; Makri E; Anzel P; Christodoulides D; Kottos T; Thomas EL
    J Acoust Soc Am; 2019 Jul; 146(1):863. PubMed ID: 31370575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and Acoustic-Driven BiFeO
    Graham SA; Manchi P; Paranjape MV; Yu JS
    Small; 2024 May; 20(20):e2308428. PubMed ID: 38072813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.