These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 37829570)
21. Porous cellulose composite aerogel films with super piezoelectric properties for energy harvesting. Song Y; Wu T; Bao J; Xu M; Yang Q; Zhu L; Shi Z; Hu GH; Xiong C Carbohydr Polym; 2022 Jul; 288():119407. PubMed ID: 35450658 [TBL] [Abstract][Full Text] [Related]
22. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion. Khan FU; Izhar Rev Sci Instrum; 2016 Feb; 87(2):025003. PubMed ID: 26931884 [TBL] [Abstract][Full Text] [Related]
23. Green Wearable Sensors and Antennas for Bio-Medicine, Green Internet of Things, Energy Harvesting, and Communication Systems. Sabban A Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275370 [TBL] [Abstract][Full Text] [Related]
24. In-depth investigations into symmetrical labyrinthine acoustic metamaterial with two micro-slit entries for low-frequency sound absorption. Pavan G; Singh S J Acoust Soc Am; 2024 Jan; 155(1):496-510. PubMed ID: 38251978 [TBL] [Abstract][Full Text] [Related]
25. Three-dimensional ultrathin planar lenses by acoustic metamaterials. Li Y; Yu G; Liang B; Zou X; Li G; Cheng S; Cheng J Sci Rep; 2014 Oct; 4():6830. PubMed ID: 25354997 [TBL] [Abstract][Full Text] [Related]
26. Piezoelectric nanofiber/polymer composite membrane for noise harvesting and active acoustic wave detection. Cui N; Jia X; Lin A; Liu J; Bai S; Zhang L; Qin Y; Yang R; Zhou F; Li Y Nanoscale Adv; 2019 Dec; 1(12):4909-4914. PubMed ID: 36133119 [TBL] [Abstract][Full Text] [Related]
27. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound. Tang Y; Ren S; Meng H; Xin F; Huang L; Chen T; Zhang C; Lu TJ Sci Rep; 2017 Feb; 7():43340. PubMed ID: 28240239 [TBL] [Abstract][Full Text] [Related]
28. A transfer matrix method for calculating the transmission and reflection coefficient of labyrinthine metamaterials. Azbaid El Ouahabi A; Memoli G J Acoust Soc Am; 2022 Feb; 151(2):1022. PubMed ID: 35232102 [TBL] [Abstract][Full Text] [Related]
29. Double-Focusing Gradient-Index Lens with Elastic Bragg Mirror for Highly Efficient Energy Harvesting. Park J; Lee G; Lee D; Kim M; Rho J Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335833 [TBL] [Abstract][Full Text] [Related]
30. Moth wings are acoustic metamaterials. Neil TR; Shen Z; Robert D; Drinkwater BW; Holderied MW Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31134-31141. PubMed ID: 33229524 [TBL] [Abstract][Full Text] [Related]
31. Nonlinear optimization of acoustic energy harvesting using piezoelectric devices. Lallart M; Guyomar D; Richard C; Petit L J Acoust Soc Am; 2010 Nov; 128(5):2739-48. PubMed ID: 21110569 [TBL] [Abstract][Full Text] [Related]
32. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin. Lee S; Youn BD IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855 [TBL] [Abstract][Full Text] [Related]
33. Active control of graphene-based membrane-type acoustic metamaterials using a low voltage. Li Y; Wang S; Peng Q; Zhou Z; Yang Z; He X; Li Y Nanoscale; 2019 Sep; 11(35):16384-16392. PubMed ID: 31436776 [TBL] [Abstract][Full Text] [Related]
34. Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks. Yang Y; Jiang D; Zhang Q; Le X; Chen T; Duan H; Zheng Y BME Front; 2023; 4():0030. PubMed ID: 37849682 [No Abstract] [Full Text] [Related]
35. Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes. Park S; Kim Y; Jung H; Park JY; Lee N; Seo Y Sci Rep; 2017 Dec; 7(1):17290. PubMed ID: 29229966 [TBL] [Abstract][Full Text] [Related]
36. Helix structure for low frequency acoustic energy harvesting. Yuan M; Cao Z; Luo J; Pang Z Rev Sci Instrum; 2018 May; 89(5):055002. PubMed ID: 29864807 [TBL] [Abstract][Full Text] [Related]
37. Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO Suo G; Yu Y; Zhang Z; Wang S; Zhao P; Li J; Wang X ACS Appl Mater Interfaces; 2016 Dec; 8(50):34335-34341. PubMed ID: 27936326 [TBL] [Abstract][Full Text] [Related]
38. Circuit Techniques for High Efficiency Piezoelectric Energy Harvesting. Yang Y; Chen Z; Kuai Q; Liang J; Liu J; Zeng X Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888860 [TBL] [Abstract][Full Text] [Related]
39. Low-Frequency Sound-Insulation Performance of Labyrinth-Type Helmholtz and Thin-Film Compound Acoustic Metamaterial. Hu P; Zhao J; Liu H; Zhang X; Zhang G; Yao H Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336216 [TBL] [Abstract][Full Text] [Related]
40. Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. Bhavanasi V; Kumar V; Parida K; Wang J; Lee PS ACS Appl Mater Interfaces; 2016 Jan; 8(1):521-9. PubMed ID: 26693844 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]