These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37830243)
1. Metal-free recycling of waste polyethylene terephthalate mediated by TBD protic ionic salts: the crucial role of anionic ligands. Zhu C; Yang L; Chen C; Zeng G; Jiang W Phys Chem Chem Phys; 2023 Oct; 25(41):27936-27941. PubMed ID: 37830243 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic insight into the roles of anions and cations in the degradation of poly(ethylene terephthalate) catalyzed by ionic liquids. Ju Z; Zhou L; Lu X; Li Y; Yao X; Cheng S; Chen G; Ge C Phys Chem Chem Phys; 2021 Sep; 23(34):18659-18668. PubMed ID: 34612403 [TBL] [Abstract][Full Text] [Related]
3. Two-Step Chemo-Microbial Degradation of Post-Consumer Polyethylene Terephthalate (PET) Plastic Enabled by a Biomass-Waste Catalyst. Shingwekar D; Laster H; Kemp H; Mellies JL Bioengineering (Basel); 2023 Oct; 10(11):. PubMed ID: 38002377 [TBL] [Abstract][Full Text] [Related]
4. Integrating experimental and computational approaches for deep eutectic solvent-catalyzed glycolysis of post-consumer polyethylene terephthalate. Ha GS; Rashid MAM; Oh DH; Ha JM; Yoo CJ; Jeon BH; Koo B; Jeong K; Kim KH Waste Manag; 2024 Feb; 174():411-419. PubMed ID: 38103351 [TBL] [Abstract][Full Text] [Related]
5. Optimization and Kinetic Evaluation for Glycolytic Depolymerization of Post-Consumer PET Waste with Sodium Methoxide. Javed S; Fisse J; Vogt D Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771987 [TBL] [Abstract][Full Text] [Related]
6. Oxygen Vacancy Promoted Generation of Monatomic Oxygen Anion over Ni Lin Y; Yang D; Meng C; Si C; Zhang Q; Zeng G; Jiang W ChemSusChem; 2023 May; 16(9):e202300154. PubMed ID: 36862090 [TBL] [Abstract][Full Text] [Related]
7. Magnetic ionic liquid catalyst functionalized with antimony (III) bromide for effective glycolysis of polyethylene terephthalate. Mohammadi S; Enayati M Waste Manag; 2023 Oct; 170():308-316. PubMed ID: 37738758 [TBL] [Abstract][Full Text] [Related]
8. Enhancing polyethylene terephthalate conversion through efficient microwave-assisted deep eutectic solvent-catalyzed glycolysis. Ha GS; Al Mamunur Rashid M; Ha JM; Yoo CJ; Jeon BH; Jeong K; Kim KH Chemosphere; 2024 Feb; 349():140781. PubMed ID: 38006913 [TBL] [Abstract][Full Text] [Related]
9. Ti-Si composite glycol salts: depolymerization and repolymerization studies of PET. Yu Y; Shen G; Xu TJ; Wen R; Qiao YC; Cheng RC; Huo Y RSC Adv; 2023 Dec; 13(51):36337-36345. PubMed ID: 38093730 [TBL] [Abstract][Full Text] [Related]
10. Controlled Glycolysis of Poly(ethylene terephthalate) to Oligomers under Microwave Irradiation Using Antimony(III) Oxide. Mohammadi S; Bouldo MG; Enayati M ACS Appl Polym Mater; 2023 Aug; 5(8):6574-6584. PubMed ID: 37588081 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of organocatalytic amidation and trans-esterification of aromatic esters as a model for the depolymerization of poly(ethylene) terephthalate. Horn HW; Jones GO; Wei DS; Fukushima K; Lecuyer JM; Coady DJ; Hedrick JL; Rice JE J Phys Chem A; 2012 Dec; 116(51):12389-98. PubMed ID: 23241219 [TBL] [Abstract][Full Text] [Related]
12. Nanostructured micro particles as a low-cost and sustainable catalyst in the recycling of PET fiber waste by the glycolysis method. Guo Z; Adolfsson E; Tam PL Waste Manag; 2021 May; 126():559-566. PubMed ID: 33862509 [TBL] [Abstract][Full Text] [Related]
13. Improving the Sustainability of Catalytic Glycolysis of Complex PET Waste through Bio-Solvolysis. Amundarain I; López-Montenegro S; Fulgencio-Medrano L; Leivar J; Iruskieta A; Asueta A; Miguel-Fernández R; Arnaiz S; Pereda-Ayo B Polymers (Basel); 2024 Jan; 16(1):. PubMed ID: 38201807 [TBL] [Abstract][Full Text] [Related]
14. Zn- and Ti-Modified Hydrotalcites for Transesterification of Dimethyl Terephthalate with Ethylene Glycol: Effect of the Metal Oxide and Catalyst Synthesis Method. Jadhav AL; Malkar RS; Yadav GD ACS Omega; 2020 Feb; 5(5):2088-2096. PubMed ID: 32064369 [TBL] [Abstract][Full Text] [Related]
15. Crystallization of Bis(2-hydroxyethylene) Terephthalate as a Part of a Bottle-to-Bottle Recycling Concept for Poly(ethylene terephthalate). Grause G; Sutton J; Dove AP; Mitchell NA; Wood J Cryst Growth Des; 2024 Sep; 24(17):7306-7321. PubMed ID: 39247225 [TBL] [Abstract][Full Text] [Related]
16. Factorial Analysis and Thermal Kinetics of Chemical Recycling of Poly(ethylene terephthalate) Aided by Neoteric Imidazolium-Based Ionic Liquids. Gil-Castell O; Jiménez-Robles R; Gálvez-Subiela A; Marco-Velasco G; Cumplido MP; Martín-Pérez L; Cháfer A; Badia JD Polymers (Basel); 2024 Aug; 16(17):. PubMed ID: 39274083 [TBL] [Abstract][Full Text] [Related]
17. Converting Waste Polyethylene Terephthalate to High Value Monomers by Synergistic Catalysts. Wu J; Yang F; Shi D; Miao Z; Wang J; Wang D; Zhang Y ChemSusChem; 2024 Sep; ():e202401922. PubMed ID: 39340214 [TBL] [Abstract][Full Text] [Related]
18. Solubilization and Upgrading of High Polyethylene Terephthalate Loadings in a Low-Costing Bifunctional Ionic Liquid. Sun J; Liu D; Young RP; Cruz AG; Isern NG; Schuerg T; Cort JR; Simmons BA; Singh S ChemSusChem; 2018 Feb; 11(4):781-792. PubMed ID: 29178551 [TBL] [Abstract][Full Text] [Related]
19. Novel efficient enzymatic synthesis of the key-reaction intermediate of PET depolymerization, mono(2-hydroxyethyl terephthalate) - MHET. Eugenio EQ; Campisano ISP; Dias AG; Castro AM; Coelho MAZ; Langone MAP J Biotechnol; 2022 Nov; 358():102-110. PubMed ID: 36063976 [TBL] [Abstract][Full Text] [Related]
20. Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology. Kim Y; Kim M; Hwang J; Im E; Moon GD Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]