These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37830489)

  • 1. Surface-Degenerate Semiconductor Photocatalysis for Efficient Water Splitting without Sacrificial Agents via a Reticular Chemistry Approach.
    Shiuan Ng L; Raja Mogan T; Lee JK; Li H; Ken Lee CL; Kwee Lee H
    Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202313695. PubMed ID: 37830489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electron-hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting.
    Yan X; Xia M; Liu H; Zhang B; Chang C; Wang L; Yang G
    Nat Commun; 2023 Mar; 14(1):1741. PubMed ID: 36990992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.
    Kisch H
    Acc Chem Res; 2017 Apr; 50(4):1002-1010. PubMed ID: 28378591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Organic-Framework-Based Photocatalysts Optimized by Spatially Separated Cocatalysts for Overall Water Splitting.
    Zhang J; Bai T; Huang H; Yu MH; Fan X; Chang Z; Bu XH
    Adv Mater; 2020 Dec; 32(49):e2004747. PubMed ID: 33150624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic Effect of a Molecular Cocatalyst and a Heterojunction in a 1 D Semiconductor Photocatalyst for Robust and Highly Efficient Solar Hydrogen Production.
    Jiang D; Irfan RM; Sun Z; Lu D; Du P
    ChemSusChem; 2016 Nov; 9(21):3084-3092. PubMed ID: 27730758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong coupling effect at the interface of cobalt phosphate-carbon dots boost photocatalytic water splitting.
    Zhu M; Han M; Zhu C; Hu L; Huang H; Liu Y; Kang Z
    J Colloid Interface Sci; 2018 Nov; 530():256-263. PubMed ID: 29982017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H
    Trang TNQ; Phan TB; Nam ND; Thu VTH
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12195-12206. PubMed ID: 32013392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Ionothermal Copolymerization of TCNQ with PCN Semiconductor for Enhanced Photocatalytic Full Water Splitting.
    Hayat A; Shaishta N; Mane SKB; Khan J; Hayat A
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46756-46766. PubMed ID: 31762261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic Semiconductor/Carbon Dot Composites for Highly Efficient Hydrogen and Hydrogen Peroxide Coproduction from Water Photosplitting.
    Wu Z; Li X; Zhao Y; Li Y; Wei K; Shi H; Zhang T; Huang H; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60561-60570. PubMed ID: 34878264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational studies on triphenyldiyne as a two-dimensional visible-light-driven photocatalyst for overall water splitting.
    Qi S; Fan Y; Li W; Zhao M
    Phys Chem Chem Phys; 2020 Sep; 22(35):20061-20068. PubMed ID: 32936175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Polarity-Induced Spatial Charge Separation Boosts Photocatalytic Overall Water Splitting on GaN Nanorod Arrays.
    Li Z; Zhang L; Liu Y; Shao C; Gao Y; Fan F; Wang J; Li J; Yan J; Li R; Li C
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):935-942. PubMed ID: 31670455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings.
    Chen B; Wu LZ; Tung CH
    Acc Chem Res; 2018 Oct; 51(10):2512-2523. PubMed ID: 30280898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: A review.
    Rao VN; Reddy NL; Kumari MM; Cheralathan KK; Ravi P; Sathish M; Neppolian B; Reddy KR; Shetti NP; Prathap P; Aminabhavi TM; Shankar MV
    J Environ Manage; 2019 Oct; 248():109246. PubMed ID: 31323456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unleashing the room temperature boronization: Blooming of Ni-ZIF nanobuds for efficient photo/electro catalysis of water.
    John G; Priyadarshini S; Babu A; Mohan H; Oh BT; Navaneethan M; Jesuraj PJ
    Chemosphere; 2024 Jan; 346():140574. PubMed ID: 37926164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Built-in electric field for photocatalytic overall water splitting through a TiO
    Chi Q; Zhu G; Jia D; Ye W; Wang Y; Wang J; Tao T; Xu F; Jia G; Li W; Gao P
    Nanoscale; 2021 Mar; 13(8):4496-4504. PubMed ID: 33599650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Seawater Ions in Forming an Effective Interface between Photocatalyst/Cocatalyst.
    Mann R; Khushalani D
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1219-1226. PubMed ID: 36562989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo/electrocatalytic hydrogen evolution using Type-II Cu
    Mehtab A; Mao Y; M Alshehri S; Ahmad T
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1467-1480. PubMed ID: 37659315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P-doped Mn
    Yang X; Sun W; Li B; Dong Y; Huang X; Hu C; Chen M; Li Y; Ding Y
    J Colloid Interface Sci; 2024 Feb; 655():779-788. PubMed ID: 37976751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CdS nanosphere-decorated hollow polyhedral ZCO derived from a metal-organic framework (MOF) for effective photocatalytic water evolution.
    Chen W; Fang J; Zhang Y; Chen G; Zhao S; Zhang C; Xu R; Bao J; Zhou Y; Xiang X
    Nanoscale; 2018 Mar; 10(9):4463-4474. PubMed ID: 29457808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.