These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37830541)
1. Identification of Aggregation Mechanism of Acetylated PHF6* and PHF6 Tau Peptides Based on Molecular Dynamics Simulations and Markov State Modeling. Shah SJA; Zhang Q; Guo J; Liu H; Liu H; Villà-Freixa J ACS Chem Neurosci; 2023 Nov; 14(21):3959-3971. PubMed ID: 37830541 [TBL] [Abstract][Full Text] [Related]
2. Disclosing the Mechanism of Spontaneous Aggregation and Template-Induced Misfolding of the Key Hexapeptide (PHF6) of Tau Protein Based on Molecular Dynamics Simulation. Liu H; Zhong H; Liu X; Zhou S; Tan S; Liu H; Yao X ACS Chem Neurosci; 2019 Dec; 10(12):4810-4823. PubMed ID: 31661961 [TBL] [Abstract][Full Text] [Related]
3. On the Tracks of the Aggregation Mechanism of the PHF6 Peptide from Tau Protein: Molecular Dynamics, Energy, and Interaction Network Investigations. Fagnen C; Giovannini J; Catto M; Voisin-Chiret AS; Sopkova-de Oliveira Santos J ACS Chem Neurosci; 2022 Oct; 13(19):2874-2887. PubMed ID: 36153969 [TBL] [Abstract][Full Text] [Related]
4. Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6. Fanni AM; Vander Zanden CM; Majewska PV; Majewski J; Chi EY J Biol Chem; 2019 Oct; 294(42):15304-15317. PubMed ID: 31439664 [TBL] [Abstract][Full Text] [Related]
5. Unraveling the Influence of K280 Acetylation on the Conformational Features of Tau Core Fragment: A Molecular Dynamics Simulation Study. Zou Y; Guan L Front Mol Biosci; 2021; 8():801577. PubMed ID: 34966788 [TBL] [Abstract][Full Text] [Related]
6. Deciphering the Inhibitory Mechanism of Naphthoquinone-Dopamine on the Aggregation of Tau Core Fragments PHF6* and PHF6. Zou Y; Qi B; Tan J; Guan L; Zhang Q; Sun Y; Huang F ACS Chem Neurosci; 2023 Sep; 14(17):3265-3277. PubMed ID: 37585669 [TBL] [Abstract][Full Text] [Related]
7. Atomistic Insights into the Inhibitory Mechanism of Tyrosine Phosphorylation against the Aggregation of Human Tau Fragment PHF6. Zou Y; Guan L; Tan J; Qi B; Wang Y; Zhang Q; Sun Y J Phys Chem B; 2023 Jan; 127(1):335-345. PubMed ID: 36594671 [TBL] [Abstract][Full Text] [Related]
8. Molecular Insights into the Differential Effects of Acetylation on the Aggregation of Tau Microtubule-Binding Repeats. Zou Y; Guan L; Tan J; Qi B; Sun Y; Huang F; Zhang Q J Chem Inf Model; 2024 Apr; 64(8):3386-3399. PubMed ID: 38489841 [TBL] [Abstract][Full Text] [Related]
9. Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule-binding repeats in filament nucleation. Barré P; Eliezer D Protein Sci; 2013 Aug; 22(8):1037-48. PubMed ID: 23740819 [TBL] [Abstract][Full Text] [Related]
10. Post-translational modifications within tau paired helical filament nucleating motifs perturb microtubule interactions and oligomer formation. Acosta DM; Mancinelli C; Bracken C; Eliezer D J Biol Chem; 2022 Jan; 298(1):101442. PubMed ID: 34838590 [TBL] [Abstract][Full Text] [Related]
11. Deciphering the Effect of Lysine Acetylation on the Misfolding and Aggregation of Human Tau Fragment Shah SJA; Zhong H; Zhang Q; Liu H Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269542 [TBL] [Abstract][Full Text] [Related]
12. Potent Tau Aggregation Inhibitor D-Peptides Selected against Tau-Repeat 2 Using Mirror Image Phage Display. Malhis M; Kaniyappan S; Aillaud I; Chandupatla RR; Ramirez LM; Zweckstetter M; Horn AHC; Mandelkow E; Sticht H; Funke SA Chembiochem; 2021 Nov; 22(21):3049-3059. PubMed ID: 34375027 [TBL] [Abstract][Full Text] [Related]
13. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. Ganguly P; Do TD; Larini L; LaPointe NE; Sercel AJ; Shade MF; Feinstein SC; Bowers MT; Shea JE J Phys Chem B; 2015 Apr; 119(13):4582-93. PubMed ID: 25775228 [TBL] [Abstract][Full Text] [Related]
14. Misfolding and Self-Assembly Dynamics of Microtubule-Binding Repeats of the Alzheimer-Related Protein Tau. He H; Liu Y; Sun Y; Ding F J Chem Inf Model; 2021 Jun; 61(6):2916-2925. PubMed ID: 34032430 [TBL] [Abstract][Full Text] [Related]
15. Deciphering the Role of ATP on PHF6 Aggregation. Pal S; Roy R; Paul S J Phys Chem B; 2022 Jul; 126(26):4761-4775. PubMed ID: 35759245 [TBL] [Abstract][Full Text] [Related]
16. The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study. Liu H; Zhong H; Xu Z; Zhang Q; Shah SJA; Liu H; Yao X Phys Chem Chem Phys; 2020 May; 22(19):10968-10980. PubMed ID: 32392276 [TBL] [Abstract][Full Text] [Related]
17. Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of PHF6 Peptide of Tau Protein. Man VH; He X; Gao J; Wang J J Chem Theory Comput; 2021 Oct; 17(10):6458-6471. PubMed ID: 34491058 [TBL] [Abstract][Full Text] [Related]
18. Selection of a d-Enantiomeric Peptide Specifically Binding to PHF6 for Inhibiting Tau Aggregation in Transgenic Mice. Zhang X; Zhang X; Zhong M; Zhao P; Guo C; Li Y; Wang T; Gao H ACS Chem Neurosci; 2020 Dec; 11(24):4240-4253. PubMed ID: 33284003 [TBL] [Abstract][Full Text] [Related]
19. Structural insights into the co-aggregation of Aβ and tau amyloid core peptides: Revealing potential pathological heterooligomers by simulations. Li X; Chen Y; Yang Z; Zhang S; Wei G; Zhang L Int J Biol Macromol; 2024 Jan; 254(Pt 2):127841. PubMed ID: 37924907 [TBL] [Abstract][Full Text] [Related]