BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 37830609)

  • 1. Enhancing Antisense Oligonucleotide-Based Therapeutic Delivery with DG9, a Versatile Cell-Penetrating Peptide.
    Haque US; Yokota T
    Cells; 2023 Oct; 12(19):. PubMed ID: 37830609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of Cell-Penetrating Peptide-Conjugated Antisense Oligonucleotides for the Treatment of SMA.
    Leckie J; Yokota T
    Molecules; 2024 Jun; 29(11):. PubMed ID: 38893532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges and future perspective of antisense therapy for spinal muscular atrophy: A review.
    Nakevska Z; Yokota T
    Eur J Cell Biol; 2023 Jun; 102(2):151326. PubMed ID: 37295266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antisense oligonucleotides: absorption, distribution, metabolism, and excretion.
    Shadid M; Badawi M; Abulrob A
    Expert Opin Drug Metab Toxicol; 2021 Nov; 17(11):1281-1292. PubMed ID: 34643122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of DG9 peptide-conjugated single- and multi-exon skipping therapies for the treatment of Duchenne muscular dystrophy.
    Lim KRQ; Woo S; Melo D; Huang Y; Dzierlega K; Shah MNA; Aslesh T; Roshmi RR; Echigoya Y; Maruyama R; Moulton HM; Yokota T
    Proc Natl Acad Sci U S A; 2022 Mar; 119(9):. PubMed ID: 35193974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-Conjugated PMOs for the Treatment of Myotonic Dystrophy.
    Stoodley J; Miraz DS; Jad Y; Fischer M; Wood MJA; Varela MA
    Methods Mol Biol; 2023; 2587():209-237. PubMed ID: 36401033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Multiexon Skipping by Antisense PMOs in Dystrophic Dog and Exon 7-Deleted DMD Patient.
    Nakamura A; Aoki Y; Tsoumpra M; Yokota T; Takeda S
    Methods Mol Biol; 2018; 1828():151-163. PubMed ID: 30171540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient systemic CNS delivery of a therapeutic antisense oligonucleotide with a blood-brain barrier-penetrating ApoE-derived peptide.
    Yeoh YQ; Amin A; Cuic B; Tomas D; Turner BJ; Shabanpoor F
    Biomed Pharmacother; 2024 Jun; 175():116737. PubMed ID: 38749176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy.
    Shabanpoor F; McClorey G; Saleh AF; Järver P; Wood MJ; Gait MJ
    Nucleic Acids Res; 2015 Jan; 43(1):29-39. PubMed ID: 25468897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Cell-Penetrating Peptide Delivery of Antisense Oligonucleotides for Therapeutic Efficacy in Spinal Muscular Atrophy.
    Hammond SM; Abendroth F; Gait MJ; Wood MJA
    Methods Mol Biol; 2019; 2036():221-236. PubMed ID: 31410800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DG9-conjugated morpholino rescues phenotype in SMA mice by reaching the CNS via a subcutaneous administration.
    Aslesh T; Erkut E; Ren J; Lim KRQ; Woo S; Hatlevig S; Moulton HM; Gosgnach S; Greer J; Maruyama R; Yokota T
    JCI Insight; 2023 Mar; 8(5):. PubMed ID: 36719755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a Peptide for Systemic Brain Delivery of a Morpholino Oligonucleotide in Mouse Models of Spinal Muscular Atrophy.
    Shabanpoor F; Hammond SM; Abendroth F; Hazell G; Wood MJA; Gait MJ
    Nucleic Acid Ther; 2017 Jun; 27(3):130-143. PubMed ID: 28118087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Golodirsen for Duchenne muscular dystrophy.
    Anwar S; Yokota T
    Drugs Today (Barc); 2020 Aug; 56(8):491-504. PubMed ID: 33025945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Penetrating Peptide Conjugates of Steric Blocking Oligonucleotides as Therapeutics for Neuromuscular Diseases from a Historical Perspective to Current Prospects of Treatment.
    Gait MJ; Arzumanov AA; McClorey G; Godfrey C; Betts C; Hammond S; Wood MJA
    Nucleic Acid Ther; 2019 Feb; 29(1):1-12. PubMed ID: 30307373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exon Skipping Therapy Using Phosphorodiamidate Morpholino Oligomers in the mdx52 Mouse Model of Duchenne Muscular Dystrophy.
    Miyatake S; Mizobe Y; Takizawa H; Hara Y; Yokota T; Takeda S; Aoki Y
    Methods Mol Biol; 2018; 1687():123-141. PubMed ID: 29067660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold?
    Guncay A; Yokota T
    Future Med Chem; 2015; 7(13):1631-5. PubMed ID: 26423833
    [No Abstract]   [Full Text] [Related]  

  • 18. Thiomorpholino oligonucleotides as a robust class of next generation platforms for alternate mRNA splicing.
    Le BT; Paul S; Jastrzebska K; Langer H; Caruthers MH; Veedu RN
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2207956119. PubMed ID: 36037350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viltolarsen for the treatment of Duchenne muscular dystrophy.
    Roshmi RR; Yokota T
    Drugs Today (Barc); 2019 Oct; 55(10):627-639. PubMed ID: 31720560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helix-Stabilized Cell-Penetrating Peptides for Delivery of Antisense Morpholino Oligomers: Relationships among Helicity, Cellular Uptake, and Antisense Activity.
    Takada H; Tsuchiya K; Demizu Y
    Bioconjug Chem; 2022 Jul; 33(7):1311-1318. PubMed ID: 35737901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.